Phase contrast X-ray imaging can be much more sensitive to soft tissue lesions than conventional absorption contrast X-ray imaging, being a potential game changer for medical imaging. A phase contrast method well suited for clinical implementation is the grating interferometry. We show that by using μm period multi-meter long interferometers one can strongly increase the phase sensitivity and lower the dose towards soft tissue imaging applications such mammography. Conventional X-ray tubes do not provide, however, sufficient X-ray flux for clinical imaging with such long interferometers. Instead, 100-TW class lasers could produce highly directional and intense X-ray sources ideal for high sensitivity medical interferometry. We present the X-ray source characteristics required for clinical interferometry, advantages and disadvantages of betatron versus inverse Compton scattering sources for clinical application, and some practical considerations towards laser based interferometric medical imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.