The Large Interferometer For Exoplanets (LIFE) is a proposed space mission that enables the spectral characterization of the thermal emission of exoplanets in the solar neighborhood. The mission is designed to search for global atmospheric biosignatures on dozens of temperate terrestrial exoplanets and it will naturally investigate the diversity of other worlds. Here, we review the status of the mission concept, discuss the key mission parameters, and outline the trade-offs related to the mission’s architecture. In preparation for an upcoming concept study, we define a mission baseline based on a free-formation flying constellation of a double Bracewell nulling interferometer that consists of 4 collectors and a central beam-combiner spacecraft. The interferometric baselines are between 10–600m, and the estimated diameters of the collectors are at least 2m (but will depend on the total achievable instrument throughput). The spectral required wavelength range is 6–16μm (with a goal of 4–18.5μm), hence cryogenic temperatures are needed both for the collectors and the beam combiners. One of the key challenges is the required deep, stable, and broad-band nulling performance while maintaining a high system throughput for the planet signal. Among many ongoing or needed technology development activities, the demonstration of the measurement principle under cryogenic conditions is fundamentally important for LIFE.
NIRPS is a fiber-fed AO nIR spectrograph working simultaneously with HARPS at the La Silla-ESO 3.6m telescope. The cryogenic spectrograph operating at 75K employs a cross-dispersed echelle grating (R4), covering a wavelength range of 0.98-1.80 microns in a single image using a Teledyne Hawaii-4RG infrared detector. In early 2022, the NIRPS spectrograph was transported to Chile by plane with all the optical elements mechanically attached to the optical bench inside the vaccum vessel. To ensure the safety of the spectrograph, dedicated work was performed on the shipping crate design, which could survive up to 7g shocks. In La Silla, the vacuum vessel was re-integrated on its support structure and the spectrograph alignment was verified with the H4RG and the injection module. Given the optical design, the alignment phase was performed using a metrology arm and a few optical tests, which minimize the time required for this critical phase. From the validation/technical phase results, two major modifications were required. Firstly, the original grating element was replaced by a new etched crystalline silicon component made by the Fraunhofer Institute for Applied Optics and Precision Engineering. A novel technique was developed to verify the alignment at a warm temperature with the H4RG detector. Secondly, a thermal enclosure was added around the vacuum vessel to optimize thermal stability. Since then, the long-term thermal stability has been better than 0.2mK over 20 days. In this paper, we will review the final spectrograph performances, prior to shipping, and describe the novel techniques developed to minimize shipping costs, AITV phase duration, and grating replacement at the observatory. Additionally, we will discuss the thermal enclosure design to achieve the sub-mK thermal stability.
The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs ([U]BV, RIZ, YJH) providing a spectral resolution of ∼100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 μm with the goal of extending it to 0.35-2.4 μm with the addition of an U arm to the BV spectrograph and a separate K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Modularity and fibre-feeding allows ANDES to be placed partly on the ELT Nasmyth platform and partly in the Coudé room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of almost 300 scientists and engineers which include the majority of the scientific and technical expertise in the field that can be found in ESO member states.
The Near-InfraRed Planet Searcher or NIRPS is a precision radial velocity spectrograph developed through collaborative efforts among laboratories in Switzerland, Canada, Brazil, France, Portugal and Spain. NIRPS extends to the 0.98-1.8 μm domain of the pioneering HARPS instrument at the La Silla 3.6-m telescope in Chile and it has achieved unparalleled precision, measuring stellar radial velocities in the infrared with accuracy better than 1 m/s. NIRPS can be used either standalone, or simultaneously with HARPS. Commissioned in late 2022 and early 2023, NIRPS embarked on a 5-year Guaranteed Time Observation (GTO) program in April 2023, spanning 720 observing nights. This program focuses on planetary systems around M dwarfs, encompassing both the immediate solar vicinity and transit follow-ups, alongside transit and emission spectroscopy observations. We highlight NIRPS’s current performances and the insights gained during its deployment at the telescope. The lessons learned and successes achieved contribute to the ongoing advancement of precision radial velocity measurements and high spectral fidelity, further solidifying NIRPS’ role in the forefront of the field of exoplanets.
NASA recently announced the Habitable Worlds Observatory, a coronagraphic mission to detect rocky planets in their habitable zones, assess their habitability, and search for biosignatures. Surface liquid water is central to the definition of planetary habitability. Photometric and polarimetric phase variations are one of the main ways we expect to be able to detect oceans, via specular reflections off the surface water. The range of scattering phases accessible for an exoplanet can be limited by its orbital inclination or the coronagraph’s inner working angle. We use the list of target stars for the Habitable Worlds Observatory to estimate the number of exo-Earths that could be searched for non-Lambertian scattering phenomena. Here we will present our methodology and the relationship between inner working angle and accessible phase angles. From these results, we quantify the number of systems for which we expect to be able to detect ocean glint (and other scattering processes), as a function of the accessible inner working angle.
To reduce the amount of stellar light for exoplanet detection, coronagraphs feature amplitude masks in pupils plane(s) and/or focal plane(s), where a large fraction of photons are stopped -- and generally not used. Here, we give an overview of where potentially useful stellar (and circumstellar) photons are lost. We review existing concepts that use these lost photons, and propose generic strategies to make use of them for various applications. We particularly focus on wavefront sensing applications, but also explore how these photons can be used for calibration measurements, or for additional scientific observations.
The detection and characterization of Earth-like exoplanets around Sun-like stars is a primary science motivation for the Habitable Worlds Observatory. However, the current best technology is not yet advanced enough to reach the 10−10 contrasts at close angular separations and at the same time remain insensitive to low-order aberrations, as would be required to achieve high-contrast imaging of exo-Earths. Photonic technologies could fill this gap, potentially doubling exo-Earth yield. We review current work on photonic coronagraphs and investigate the potential of hybridized designs which combine both classical coronagraph designs and photonic technologies into a single optical system. We present two possible systems. First, a hybrid solution which splits the field of view spatially such that the photonics handle light within the inner working angle and a conventional coronagraph that suppresses starlight outside it. Second, a hybrid solution where the conventional coronagraph and photonics operate in series, complementing each other and thereby loosening requirements on each subsystem. As photonic technologies continue to advance, a hybrid or fully photonic coronagraph holds great potential for future exoplanet imaging from space.
Looking to the future of exo-Earth imaging from the ground, core technology developments are required in visible Extreme Adaptive Optics (ExAO) to enable the observation of atmospheric features such as oxygen on rocky planets in visible light. UNDERGROUND (Ultra-fast AO techNology Determination for Exoplanet imageRs from the GROUND), a collaboration built in Feb. 2023 at the Optimal Exoplanet Imagers Lorentz Workshop, aims to (1) motivate oxygen detection in Proxima Centauri b and analogs as an informative science case for high-contrast imaging and direct spectroscopy, (2) overview the state of the field with respect to visible exoplanet imagers, and (3) set the instrumental requirements to achieve this goal and identify what key technologies require further development.
The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs (UBV, RIZ, YJH) providing a spectral resolution of ∼100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 µm with the goal of extending it to 0.35-2.4 µm with the addition of a K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Its modularity will ensure that ANDES can be placed entirely on the ELT Nasmyth platform, if enough mass and volume is available, or partly in the Coudé room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of more than 200 scientists and engineers which represent the majority of the scientific and technical expertise in the field among ESO member states.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.