Passivated, carrier-selective contacts have enabled a recent surge in the efficiency of crystalline silicon solar cells by reducing the Shockley-Read-Hall recombination at the electrical contacts for the cell. They operate by allowing the extraction of only the majority carriers from the absorber, i.e., the c-Si wafer. The molybdenum oxide and nickel stack is known to form an effective hole-selective contact. However, the parasitic optical losses they introduced limit the quantum efficiency and therefore efficiency of solar cells featuring these materials. In this work, we introduce photonic nanostructures with reduced parasitic losses in the contacts and enhancement of light trapping in the active area of the cell. The optimized structure shows its potential for increasing photogenerated current density and efficiency as a result.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.