Semantic segmentation is one of the most popular and challenging applications of deep learning. It refers to the process of dividing a digital image into semantically homogeneous areas with similar properties. We employ the use of deep learning techniques to perform semantic segmentation on high-resolution satellite images representing urban scenes to identify roads, vegetation, and buildings. A SegNet-based neural network with an encoder–decoder architecture is employed. Despite the small size of the dataset, the results are promising. We show that the network is able to accurately distinguish between these groups for different test images, when using a network with four convolutional layers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.