In this study, a novel approach is presented to overcome the challenge of replacing conventional opaque ultrasound transducers (OUTs) with transparent ultrasound transducers (TUTs) that seamlessly integrate optical and ultrasound components. TUTs offer a design that seamlessly combines optical and ultrasound modalities, providing a convenient solution to overcome challenges such as beam combiner or off-axis problems. However, their performance has been significantly limited due to acoustic impedance mismatch. To address the acoustic impedance mismatch problem, transparent composite-based matching and backing layers are utilized with acoustic impedances exceeding 7 and 4 MRayl, respectively. These layers facilitate the development of an ultrasensitive and wideband TUT with a single resonance frequency and a pulse-echo bandwidth of over 60%, equivalent to traditional OUTs. The TUT demonstrates exceptional performance, with over 80% optical transparency, maximizing acoustic power transfer efficiency, maintaining spectrum flatness, and minimizing ringdowns. Such capabilities enable high-contrast and high-definition dual-modal ultrasound and photoacoustic imaging in both animals and humans. Notably, these imaging modalities achieve a penetration depth of over 15 mm, utilizing a 30MHz TUT. We believe this advancement opens up new possibilities for non-invasive imaging applications, offering enhanced diagnostic capabilities and potential insights into biological structures at greater depths.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.