Futuristic mobile data networks are expected to reach higher data rates per user to accommodate the specifications of emerging services, such as triple play and mobile applications. Researchers are carrying out their works to tackle the drawbacks of traditional orthogonal frequency-division multiplexing by designing new waveforms with high spectral efficiency and low out-of-band emissions. Among many others, filter bank multicarrier (FBMC) is an appealing candidate for beyond 5G that fulfills these constraints. Consequently, it is worth to shed light on the performance of FBMC in multichannel transmission system. The main contribution of our paper is to compensate fiber nonlinearity including self-phase modulation and cross-phase modulation effects using adaptive Volterra equalizer in longhaul FBMC system based on a 6 × 20 Gb / s in wavelength-division multiplexing scheme over 100 km × 30 spans of single-mode fiber (SMF). The impacts of channel spacing, bit rate, and fiber types on system performance are addressed. For a target of bit error rate = 10 − 3, the simulations show that this performance can be reached at −12 dBm of launch power when 5-taps third-order Volterra (TOV) equalizer is used for 12.5 GHz of channel spacing and an improvement of approximately 1 dB is obtained for 7 taps compared with the same equalizer with 3 taps. To further enhance the system performance, standard-SMF is replaced by a new class fiber called pure-silica-core fiber with large effective area, which exhibits a gain of almost 1.3 and 1 dB for 3 and 5 taps, respectively. The complexity burden of the TOV filter is also discussed.
We investigate the performance of 25-Gbps dual-polarized orthogonal frequency division multiplexing (OFDM)-based modulation in a directly modulated distributed feedback (DFB)-laser over 25 km of single-mode fiber. A Volterra equalizer is used to compensate for the nonlinear effects of the optical fiber. The results show that FBMC-OQAM modulation outperforms OFDM, universal filtered multicarrier (UFMC), and generalized frequency division multiplexing (GFDM) waveforms. Indeed, a target bit error rate of ∼3.8 × 10 − 3 [forward error correction (FEC) limit] for FBMC, UFMC, OFDM, and GFDM can be achieved at −30.5, −26, −16, and −14.9 dBm, respectively. The effect of the DFB laser is also investigated for UFMC, OFDM, and GFDM, and they undergo a Q penalty of 2.44, 2.77, and 4.14 dB, respectively, at their FEC limit points. For FBMC-OQAM, the signal is perfectly recovered when excluding the DFB laser at −30.5 dBm.
Motivated by the robust immunity to interference as well as the higher spectrum efficiency, Orthogonal Frequency Division Multiplexing (OFDM) has been widely considered as one of the strongest contenders for high-speed Next- Generation Passive Optical Networks (NG-PONs), which satisfies the huge surge in demand for high-speed broadband services. In the other hand, OFDM systems suffer from a high Peak-to-Average Power Ratio (PAPR) at the transmitted signal resulting in signal degradation. The simplest method to deal with the PAPR problem consists in applying deliberate clipping to the transmitted signal which significantly reduces the requirement of the received optical power. In this paper, an analytical evaluation for the performance of an IM/DD optical OFDM system is shown, this is while accounting for clipping distortion and quantification noise caused by the limited bit resolution of DAC converter. Moreover, the paper demonstrates that applying digital signal restoration at the system receiver enables further improvements in the system performances in terms of enhanced effective Signal-to-Noise Ratio (SNR) and reduced optical power that is required to achieve specified Bit-Error-Rate (BER).
This paper addresses OFDM (orthogonal frequency division multiplexing) transmission over optical links with high
spectral efficiency, i.e. by using high-order QAM-modulation schemes as a mapping method prior to the OFDM
multicarrier representation. Here we address especially coherent optical OFDM modem in long distance which is
affected by a nonlinear distortion caused by fiber nonlinearity as a major performance-limiting factor in advanced optical
communication systems. We proposed a nonlinear electrical equalization scheme based on the Volterra model.
Compared with other popular linear compensation technique such as the LMS (least Mean Square) and RLS (Recursive
Least square), simulation results are presented to demonstrate the capability of a Volterra model based electrical
equalizer used in a coherent optical orthogonal frequency division multiplexing system. It is shown that the Volterra
model based equalizer can significantly reduce nonlinear distortion.
We propose a non Linear Wiener Hammerstein channel equalization algorithm for coherent optical OFDM system. The proposed equalization method compensates the channel non linearities. Simulations for the proposed non linear equalizer are conducted using a training sequence method to determine optimal performance through a comparative analysis. When compared to the un-equalized signals results show an improvement when using the Wiener Hammerstein equalizer. Moreover, it is shown that Wiener Hammerstein algorithm showed to be significantly beneficial for coherent optical OFDM systems. The performances of all different schemes were compared with respect to bit error rate, transmission distance, optical signal to noise ratio, power launch and error vector magnitude.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.