In the last decade, silicon photonics has undergone an impressive development driven by an increasing number of technological applications. Plasmonics has not yet made its way to the microelectronic industry, mostly because of the lack of compatibility of typical plasmonic materials with foundry processes. In this framework, we have developed a plasmonic platform based on heavily n-doped Ge grown on silicon substrates. We developed growth protocols to reach n-doping levels exceeding 1020 cm-3, allowing us to tune the plasma wavelength of Ge in the 3-15 μm range. The plasmonic resonances of Ge-on-Si nanoantennas have been predicted by simulations, confirmed by experimental spectra and exploited for molecular sensing. Our work represents a benchmark for group-IV mid-IR plasmonics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.