We describe an analog microwave photonic link system, which is used to transmit in a multiplexed way a TV signal over 30 km of standard optical fiber. The experimental setup is composed mainly by two distributed feedback (DFB) laser diodes emitting at 1500 nm. When these DFB lasers are operated in the low laser threshold current region, relaxation oscillation frequencies are obtained. Relaxation oscillations in the laser intensity can be seen as sidebands on both sides of the main laser line. The optical emissions generated in each laser are combined and amplified by using an erbium-doped fiber amplifier. Next, the amplified optical signal is detected by a fast photo-detector using direct detection method, and as result of this photo-detection, microwave signals are generated. Since microwave signals obtained by using this technique are tuned continuously; we can use them as electrical carriers to transmit simultaneously a TV signal at 4 and 5 GHz and over 30 km of standard optical fiber by using a Mach-Zehnder modulator. At the end of the optical link the modulated light is photo-detected in order to recover efficiently and successfully the analog TV signal.
In this paper we describe an analog microwave photonic link system used to transmit simultaneously two TV signals.
The experimental setup is composed mainly by two distributed feedback (DFB) laser diodes emitting at 1500 nm. When
DFB lasers are operated in the low laser threshold current region, relaxation oscillation frequencies are obtained.
Relaxation oscillations in the laser intensity can be seen as sidebands on both sides of the main laser line. The optical
emissions generated in each laser are combined and amplified by using an Erbium-Doped Fiber Amplifier (EDFA).
Next, the amplified optical signal is detected by a fast photo-detector using direct detection method and as result of this
photo-detection microwave signals are generated. Microwave signals obtained by this technique are used as electrical
carriers to transmit analog TV signals over 30 km of standard optical fiber by using a Mach-Zehnder modulator (MZM).
At the end of the optical link the modulated light is photo-detected in order to recover efficiently and successfully the
analog TV signals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.