Today, the combination of high angular resolution and high revisit rate is not readily available from space, at least not at a reasonable cost. Many applications in the science, civil or defense domains would benefit from having access to detailed images of the ground as often as possible, in order to study temporal evolutions of specific events. The high angular resolution requires large optics hence large platforms, whereas the revisit rate requires constellations of multiple satellites and therefore small and affordable platforms. We proposed the concept of a deployable telescope onboard a CubeSat, called AZIMOV [1, 3, 5], to address this specific gap. Reaching a diameter of 30 cm once deployed, this concept gives access to a meter resolution on the ground from a Low Earth Orbit, or to a 70 cm resolution on Mars surface from a 400 km polar orbit. We study in this paper the performance of such a telescope in the aggressive thermal environment of space, with respect to the tight optical requirements of the system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.