Flexible thin-film Electro-Adhesive Devices (EADs) represent a promising technology with great potential for gripper applications. Generally, the gripping action of an EAD is due to the electrostatic force induced by an electric field produced by applying a voltage across a couple of electrodes that are embedded between dielectric substrates. This paper presents a novel manufacturing process and the experimental characterization of a multilayer electro-adhesive gripper. The proposed device employs highly elastic silicone (PDMS) thin-film as the grasping layer, i.e., the dielectric layer that comes in contact with the grasped object, a carbon-black mixture in a silicone compound for the electrodes, and a rigid polyimide thin-film as the backing layer, i.e., the dielectric layer on the backside of the EAD. A fabrication methodology is illustrated, which starts from a casting of thin conductive electrodes on a polyimide film, followed by a laser-cutting operation to shape the electrodes and a blade casting process to encapsulate the overall system in a PDMS compound. Different prototypes obtained through this manufacturing procedure have been experimentally evaluated through a testing campaign conducted on three groups of specimens, each composed of five identical samples, with a different electrode thickness per group. Samples are tested for electrostatic shear stress and electrical breakdown during the grasping of paper substrates, identifying the best performing EAD group.
This paper describes the development of an electro-adhesive gripper with silver interdigitated electrodes that are inkjetprinted on a pre-fabricated flexible dielectric film made of polyether ether ketone (PEEK), which also acts as the gripper adhering surface, and encapsulated in a blade-casted silicone elastomer backing layer. After a description of the manufacturing approach, the paper presents and discusses the results of the electro-mechanical characterization of two fabricated nominally identical electro-adhesive devices, by specifically focusing on: electrically-induced adhesion shear stress, capacitance variation, energy and power consumption.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.