The developments of generative adversarial networks (GANs) make it possible to fill missing regions in broken images with convincing details. However, many existing approaches fail to keep the inpainted content and structures consistent with their surroundings. In this paper, we propose a GAN-based inpainting model which can restore the semantic damaged images visually reasonable and coherent. In our model, the generative network has an autoencoder frame and the discriminator network is a CNN classifier. Different from the classic autoencoder, we design a novel bottleneck layer in the middle of the autoencoder which is comprised of four dense-net blocks and each block contains vanilla convolution layers and dilated convolution layers. The kernels of dilated convolution are spread out and result in an effective enlargement of the receptive field. Thus the model can capture more widely semantic information to ensure the consistency of inpainted images. Furthermore, the multiplex of different level’s features in each dense-net block can help the model understand the whole image better to produce a convincing image. We evaluate our model over the public datasets CelebA and Stanford Cars with random position masks of different ratios. The effectiveness of our model is verified by qualitative and quantitative experiments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.