The whispering-gallery-mode(WGM) resonators have a number of advantages, including ultra-high quality factor(Q factor), extremely small mode volume and so on. It has been widely used in many fields related to high sensitivity sensing measurement, photonics material, linear and non-linear optics, and optical communication. Here we built an experimental platform for microrod resonator fabrication with a high power CO2 laser. Based on this experimental fabrication platform, a microrod resonator with an approximate 2.5mm diameter has been made, which has an ultra-smooth surface. We also designed a test platform used a tapered fiber to measure optical performances of the fabricated microrod resonator. With this test platform, we measured the maximum Q factor of the fabricated resonator, which can reach 1.52×108 under the condition of 1550nm wavelength. The fabrication platform for microrod resonator designed by our laboratory with features of fast (less than 10min), cheap, repeatable and low experimental condition. These features have huge advantages on further scaled sensing application, optoelectronic device. Furthermore, in order to design and fabricate the ultra-high sensitivity temperature sensing device, we demonstrated the frequency shift feature of the fabricated microrod resonator. We heated the microrod resonator from 22 oC to 25 oC , then calculated the experimental data. we demonstrated our microrod resonator has 0.04nm frequency shift, 14.41pm/oC temperature sensitivity, and 6.3♦10−3oC temperature resolution.
We investigate a millimeter-size Calcium fluoride (CaF2) microdisk resonator fabricated by a customized machining procedure. Stable coupling can be realized in our microdisk resonator coupled by a special tapered fiber. The mcirodisktaper coupling system exhibits an ultra-high Q factor up to ~108. In particularly, our coupling system exhibits a freespectral- range low to ~0.03 nm (~3.91 GHz). The frequency is suitable in microwave photonic systems, such as optical filters, optoelectronic oscillators, and optical gyroscopes for several technological applications such as radar, light-wave technology, frequency synthesis, detection inertial navigation system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.