To achieve high-precision dispersion measurement of optical components, a new method based on spectral shaping and frequency-to-time mapping was proposed, which was experimentally demonstrated and verified. In this research, a modelocked laser and a home-made spectral shaper were used to realize the spectral shaping of laser pulse with fingerprint-like characteristic. After transmitted through a dispersive medium, the temporal profile of the laser pulse became a scaled replica profile of the spectrum owing to the frequency-to-time mapping of chirped pulse. A Taylor-expanded chromatic dispersion model and least-square method were adopted for data analysis, which realized a measurement of 1-km fiber to the second-order dispersion with an error of 0.43%. The precision of the dispersion measurement was greatly enhanced by constructing a fingerprint-like characteristic spectrum. The experimental results showed that this method has better robustness and fidelity for different types of optical fiber, as well as various dispersive components in high-power laser system.
The issue of laser-induced damage on critical components emerges as a bottleneck that limits the high-power or high-energy laser systems, especially for the fused silica optics used in ultraviolet light. Sub-surface defects such as microcracks and impurities on fused silica optics have been discovered as damage precursors and determine the laser-induced damage threshold (LIDT) of the optics. Under the state-of-the-art advanced mitigation processes (AMP) and laser conditioning, only a few destructive damage sites that grow rapidly with successive shots still exist on a large-aperture fused silica optic. Therefore, we propose a method of selectively eliminating the destructive damage sites on fused silica optics by laser micromachining and consequently lead to a significant enhancement of LIDT in this paper. The removal of a damage site is implemented by precisely shaping the destructive damage site into an optically benign cone of special design using a femtosecond laser, with a subsequent CO2-laser-polishing process to reduce the roughness. Compared with previous methods, the thermal effect on the processed region is dramatically reduced because of the nonthermal ablation by a femtosecond laser. Through optimizing the parameters of laser micromachining, a typical damage site is eliminated and replaced with a designed cone of excellent quality. The manufactured cone typically has a smooth wall with a slope angle of 12°, a diameter of 800 μm, and a negligible raised rim with a height of 14.5 nm (∼ λ/25 @ 355 nm). By employing the raster scan LIDT test procedure, several fused silica optics processed by laser micromachining are investigated and a laser-induced damage threshold (@ 355 nm, 1.6 ns) higher than 14 J/cm2 and 10 J/cm2 on the input surface and output surface are discovered, respectively. Furthermore, the downstream light intensification is proven to be trivial in the absence of a detrimental high-intensity central spot, owing to the ultra-low raised rim. These results demonstrate that rapid laser micromachining is an effective way to improve laser-induced damage resistance of fused silica optics and eventually enhance the performance of high-power or high-energy laser systems.
Laser induced damage on dielectric mirrors and its rapid growth with successive shots have been and continue to be an important barrier to high power laser systems. Here the morphology of mitigation pit is optimized theoretically, and an ultrashort laser is utilized to totally remove damage on both high-reflective (HR) and anti-reflective (AR) coating. At the same time, the substrate is handled carefully and free of laser ablation, which lower the scattering loss and the amount of debris during laser machining process. Then, using R-on-1 test procedure, several mitigated sites with size of 1mm× 1mm are investigated by a Nd:YAG laser system with a flat-top spatial distribution of fully covering the mitigated site. The experimental results show even at the average fluence of 18J/cm2@6ns, there’s no damage initiation on AR coatings and no damage growth on HR coatings. It demonstrates that ultrashort laser machining is an effective and robust way to mitigate laser damage and a promising way to improve dielectric mirror performance of high power laser system in volume production.
A kind of defects on the incident surfaces of fused silica optics are reported having the potential to initiate the damages on the exit surfaces in the final optical assembly in high power lasers. In this light, the new safe criterions for defects on the incident surfaces are proposed to avoid the detrimental modulation effects in downstream.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.