Soft creeping robots have great potential in fields of search-and-rescue for their excellent body compliance and adaptability in unstructured environments and the capacity of passing through a narrow space. But most of the reported soft creeping robots can only crawl forward or backward except a few ones can swerve using a differential actuation mechanism, the maneuverability of the existing soft creeping robots are generally poor which limits their practical applications. In this paper, we design a soft creeping robot driven by dielectric elastomer (DE) which has the ability of omnidirectional movement. The robot mainly consists of a circular deformable body and six thin feet which are evenly distributed around the body circumference. The robot body is an annular dielectric elastomer actuator (ADEA) made by connecting a six-segment dielectric elastomer minimum energy structure end to end, which has excellent ability of active deformation controlled by applied voltages. The six feet are essentially six paper-based electroadhesion actuators which can achieve adhesion or detachment with the ground. Experimental tests for the active deformation performance of the ADEA are implemented for optimizing design of the robot. Then through activating different DE segments, the ADEA deforms from a circle to an ellipse or some irregular shapes, cooperating actuation with the six electroadhesion actuators the robot realizes free movement towards twelve directions around the plane.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.