The whispering gallery modes (WGM) micro resonators are based on elliptical objects, which can be made from optically transparent materials, The geometry of the object enables optical wave circulating inside the ellipse using total internal reflection. If there is a monochromatic light source with constant intensity to the ellipse, constructive interference may be observed. Poly methyl methacrylate acrylic (PMMA) WGM micro resonators are commercially available with typical optical quality factor of 103-104. These could limit problems with WGM micro resonator expensive manufacturing. Thanks to advances in high resolution image processing, read-outs using spectroscopy (single photo detector) could be replaced with image processing. Image processing (4.5μm/px) allows to split elliptical WGM micro resonator in regions and analyze separate sectors of the ellipse, which can used as a representation of surface irregularity interaction with higher order special mode groups. In the present work new type of image processing for micro-resonators were developed, to analyze intensity distribution in separate regions for the PMMA WGM micro-resonators (40-70 μm). Resonators were coupled using a tapered fiber and fixed wavelength VCSEL laser (760nm). Temperature was change from 20-80 0C which affected the PMMA refractive index (α), for 760nm dn/dT = -1.32 10-4 (0C-1) and thermal expansion (β) dR/dT = 2.60 10-4(0C-1). Combining the following physical changes, total changes (α+ β), WGM PMMA micro-resonator mode mapping was obtained. The following work offers new type of intensity processing methods for measuring applications using PMMA WGM micro resonators.
Optical frequency combs (OFC) using different kinds of whispering-gallery-mode (WGM) microresonators have already shown different applications and especially their applications in fiber optical communication systems as replacements of laser-arrays. For this application the free spectral range (FSR) of 200 GHz or less is desirable. Besides the fabrication material for microspheres, the resonator radius can be modified to change the FSR. In this paper use of silica microspheres for OFC represents an inexpensive alternative over the other microcombs: microring, microdisk, and microtoroid. We experimentally present a microsphere fabrication process from a different kind of silica (SiO2) fibers by use of the hydrogen-oxygen melting technique. We experimentally review the OFC generation process the main microresonator parameters as FSR, Q-factor and evaluate the resulting WGM resonator generated OFC comb light source for further applications. An OFC was excited inside a 166 μm silica microsphere WGM resonators using a 1548 nm laser light. The obtained broadband OFC spanned from 1400-1700 nm with FSR of (397 ± 10) GHz.
Our work is focused to develop sensitive optical diagnostic methods for the detection of Volatile Organic Compounds in the breath. For the breath measurements, we have built a cavity ring-down spectrometer, operated in the UV region. The system was tested and calibrated using a KinTek automated permeation tube system with nitrogen as a carrier gas, as well as self- prepared acetone mixtures in air with known concentrations. In this paper, we present results of the measurements of acetone concentration in the breath for the test group of randomly selected 40 people in the age group over 50. We observed the values of acetone concentration in the breath in the range from 0,1 – 80 ppm, with a median 7,1 ppm. The experiments showed that the limits of detection for acetone with the cavity ring-down system are several tens of ppb.
Whispering gallery mode resonators (WGMRs) are very interesting for sensing because a resonance shift could be caused by any perturbation of the surrounding environment. Additionally such a resonator is coated with nanomaterials to tailor and enhance the sensitivity for a specific purpose. WGMR were fabricated using standard telecommunication fiber and a hydrogen flame, characterized using the scan method to obtain the quality factors and then coated with gold nanoparticles (Au NPs) using dip coating method and characterized again for comparison. Au NPs were chosen because their positive impact on microresonator sensitivity has been mentioned before and the surface can later be functionalized. The deposited layer was investigated and new properties no over-coupling due to Van der Waals forces and suppression of higher order modes were observed after coating the resonator. To observe the localized surface plasmon resonance a glucose sensor test was performed using the WGMRs coated with Au NPs and glucose oxidase. Comparing the results with control measurements, the resonance shifted more for samples with Au NPs.
In our work, we demonstrate the current results of acetone measurements in exhaled breath using cavity ring down spectrometry for diagnostics of diabetes and other diseases. Our cavity ring down spectrometer is a portable system that works in UV region with the pulsed Nd:YAG laser at 266 nm. Calibration of the system was performed using generated samples by KinTek automated permeation tube system, both, self-prepared and commercial mixtures with known concentration acetone samples in air. In this experiment, we examined breath samples from healthy volunteers and some persons with diabetes before medical treatment.
Whispering Gallery Mode (WGM) resonators are very sensitive to nanoparticles attaching to the surface. We simulate this process using COMSOL Wave Optics module. Our spherical WGM resonators are produced by melting a tip of an optical fiber and we measure optical Q factors in the 105 range. Molecular oxygen lines of the air in the 760 nm region are used as reference markers when looking for the shifts of the WGM resonance lines. We demonstrate WGM microresonator surface coating with a layer of ZnO nanorods as well as with polystyrene microspheres. Coatings produce increased contact surface. Additional layer of antigens/antibodies will be coated to make high-specificity biosensors.
In this paper we report first results from the developed cavity ring-down spectrometer for application in human breath analysis for the diagnostics of diabetes and later for early detection of lung cancer. Our cavity ring-down spectrometer works in UV region with pulsed Nd:YAG laser at 266 nm wavelength. First experiments allow us to determine acetone and benzene at the level bellow ppm. In our experiment, first results from breath samples from volunteers after doing different activities were collected and examined. Influence of the smoking on the breath signals also was examined.
In this paper we report the current stage of the development of a cavity ring-down spectrometer (CRDS) system using exhaled human breath analysis for the diagnostics of different diseases like diabetes and later lung cancer. The portable CRDS system is made in ultraviolet spectral region using Nd:Yag laser 266 nm pulsed light. Calibration of the CRDS system was performed using generated samples by KinTek automated permeation tube system and self-prepared mixtures with known concentration of benzene and acetone in air. First experiments showed that the limits of detection for benzene and acetone are several tens of ppb.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.