As device scale down to sub 3nm, NMOS/PMOS boundary patterning becomes critical in logic product. This patterning requires highly directional etching while maintaining high selectivity to the base metal layer. In this paper, we demonstrated that the ion energy has the trade-off between the profile verticality and the surface damage. The ion energy was strongly controlled by the bias voltage and surface damage was improved with lower bias voltage, but profile verticality was deteriorated because of the ion angle dispersion. To enhance the profile verticality the carbon rich gas was added as the top passivation. The proposed method will be a practical in sub-3nm logic boundary patterning.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.