Knowledge of assembly, subunit architecture and dynamics of membrane proteins in a cellular context is essential to infer their biological function. Optical super-resolution techniques provide the necessary spatial resolution to study these properties of membrane protein complexes in the context of their cellular environment. Single-molecule localization microscopy (SMLM) is particularly well suited, as next to high-resolution images, it provides quantitative information on the detection of single emitters. A challenge for current super-resolution methods is to resolve individual protein subunits within a densely packed protein cluster. For this purpose, we developed quantitative SMLM (qSMLM), which reports on molecular numbers by analyzing the kinetics of single emitter blinking. Next to theoretical models for various photophysical schemes, we demonstrate this method for a selection of fluorescent proteins and synthetic dyes and a selection of membrane proteins. We next applied this tool to toll-like receptor 4 (TLR4), and found a ligand-specific formation of monomeric or dimeric receptors. Next to fluorescent proteins, DNA-PAINT offers a novel and flexible approach for quantitative super-resolution microscopy. We demonstrate DNA-PAINT imaging of structurally defined DNA origami structures and robust quantification of target sites, as well as of membrane receptors. Molecular quantification, together with experiments following single receptor mobilities in live cells, will enlighten molecular mechanisms of receptor activation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.