Indoor space 3D visual reconstruction has many applications and, once done accurately, it enables people to conduct different indoor activities in an efficient manner. For example, an effective and efficient emergency rescue response can be accomplished in a fire disaster situation by using 3D visual information of a destroyed building. Therefore, an accurate Indoor Space 3D visual reconstruction system which can be operated in any given environment without GPS has been developed using a Human-Operated mobile cart equipped with a laser scanner, CCD camera, omnidirectional camera and a computer. By using the system, accurate indoor 3D Visual Data is reconstructed automatically. The obtained 3D data can be used for rescue operations, guiding blind or partially sighted persons and so forth.
Activity analysis in a small laboratory animal is an effective procedure for various bioscience fields. The simplest way to obtain animal activity data is just observation and recording manually, even though this is labor intensive and rather subjective. In order to analyze animal movement automatically and objectivity, expensive equipment is usually needed. In the present study, we develop animal activity analysis system by means of a template matching method with video recorded movements in laboratory animal at a low cost.
We propose a point cloud data acquisition system that employs slit ray projection. In this system, a slit laser projector and a high-resolution CCD camera are connected to a Microsoft Kinect Sensor. The system is sufficiently compact that it can be hand held. In measurements of pipes, the user directs the laser slit ray at the measurement target. Kinect then detects point cloud data while the CCD camera simultaneously detects the laser streak generated on the target surface. The user manually scans the system by directing the laser slit ray along the measurement pipe. The point cloud data obtained by Kinect is used to determine the movement of the system by adjusting overlapping data in consecutive frames using the ICP (Iterative Closest Point) algorithm. This permits the system to be freely scanned. The pipe cross section is estimated from data obtained by the slit-ray projection method. The three-dimensional shape of the pipe is constructed on a computer from the obtained cross sections.
By setting a refractor with a certain angle against the optical axis of the CCD camera lens, the image of a measuring point recorded on the image plane is displaced by the corresponding amounts related to the distance between the camera and the measuring point. When the refractor that keeps the angle against the optical axis is rotated physically at high speed during the exposure of the camera, the image of a measuring point draws a circular streak. Since the size of the circular streak is inversely proportional to the distance between the camera and the measuring point, the 3D position of the measuring point can be obtained by processing the streak.
When the measuring point is moving against the camera, the measuring point draws a spiral streak on an image plane since the circular shift is added to the movement of the measuring point. The size of the spiral streak also concerns to the depth of the measuring point. The pitch of the spiral streak concerns to the velocity parallel to the image plane of the camera and the variation rate of the spiral size concerns to the velocity in the direction of the optical axis of the camera.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.