We recently proposed a quantum computing platform that exploits circuit-bound photons to create cluster states and achieve one-way measurement-based quantum computations on arrays of photonically interfaced solid-state spin qubits with long coherence-times. Single photons are used for spin initialization, readout and for photon-mediated long-range entanglement creation. In this conference talk, we elaborate on the challenges that are faced during any practical implementation of this architecture by breaking it down into the key physical building blocks. We further discuss the constraints imposed on the spin qubits and the photonic circuit components that are set by the requirements of achieving fault-tolerant performance.
Commercial silicon photonic (SiP) biosensor architectures rely on expensive swept-tunable lasers that limit their use for widespread, point-of-care applications. An alternative is the use of fixed wavelength lasers integrated directly on a silicon photonic platform. This study investigates the design considerations of such architectures.
The goal of SiEPICfab is to conduct research in the fabrication of silicon photonic devices and photonic integrated circuits, and to make leading-edge silicon photonic manufacturing accessible to Canadian and international academics and industry. SiEPICfab builds on the success of the Silicon Electronic Photonic Integrated Circuits (SiEPIC) program, which has been offering research training workshops since 2008, by adding a fabrication facility “fab”. We have developed a rapid prototyping facility to support a complete ecosystem of companies involved in silicon photonics product development, including modelling, design, library development, fabrication, test, and packaging of silicon photonics. SiEPICfab allows designers to rapidly complete design-fabricate-test cycles, with technologies such as sub-wavelength sensors, PN junction ring modulators, silicon defect-based detectors, single photon detectors, single photon sources, and photonic wire bond integration of lasers and optical fibres.
Hyperpolarizability is a measure of the nonlinear optical characteristics of natural or meta-atoms describing how the atoms become nonlinearly polarized by the induced local-field. However, determining hyperpolarizability in the case of structured plasmonic meta-atoms is not straightforward due to their relatively larger sizes, unique shapes, and the index of refraction of the surrounding dielectric medium. Also, the order-of-magnitude of hyperpolarizability may vary with the frequency of light especially when inter-band transitions in metals become dominant. Here, we experimentally and theoretically estimated the order-of-magnitude of the 1st-order hyperpolarizability of gold meta-atoms that can be used in designing nonlinear metasurfaces.
An innovative undergraduate level Nanofabrication course with a focus on photonics is proposed. This course challenges the definition of what constitutes an undergraduate class in a research-intensive university. Namely, instructor and teaching assistants (TAs) propose a moderately challenging graduate-level research project that has not been previously published; challenge the Team, consisting of the students, with the TAs and instructor, to research during the class, as a Team; have the Team collaborate on writing a research paper with the goal of submitting it to an archival journal. Through this process, students learn the course content and experience how research is conducted.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.