This paper presents an automated real-time esophagus achalasia (achalasia) detection method for esophagoscopy assistance. Achalasia is a well-recognized primary esophageal motor disorder of unknown etiology. To diagnose the achalasia, endoscopic evaluation of the esophagus and stomach is recommended to ensure that there is not a malignancy causing the disease or esophageal squamous cell carcinoma complicating achalasia. However, esophagoscopy is low sensitive in the early-stage of achalasia, only about half of patients with early-stage achalasia can be identified. Thus, a quantitative detection system of real-time esophagoscopy video is required for diagnosis assistance of achalasia. This paper presents to use of a convolutional neural network (CNN) to detect all achalasia frames in esophagoscopy videos. The features of achalasia cannot be easily distinguished. To better extract features from esophagoscopy frames, we introduce dense pooling connections and dilated convolutions in the CNN. We trained and evaluated our network with an original dataset that is extracted from several esophagoscopy videos of achalasia patients. Furthermore, we develop a real-time achalasia detection ComputerAided Diagnosis (CAD) system with the trained network. The CAD system can detect each frame from the input esophagoscopy videos with only 0.1 milliseconds delay. The real-time achalasia detection system achieved 0.872 accuracy, and 0.943 AUC score on our dataset.
Endoscopic submucosal dissection is a minimally invasive treatment for early gastric cancer. In endoscopic submucosal dissection, a physician directly removes the mucosa around the lesion under internal endoscopy by using the flush knife. However, the flush knife may accidentally pierce the colonic wall and generate a perforation on it. If physicians overlooking a small perforation, a patient may need emergency open surgery, since a perforation can easily cause peritonitis. For the prevention of overlooking of perforations, a computer-aided diagnosis system has a potential demand. We believe automatic perforation detection and localization function is very useful for the analysis of endoscopic submucosal dissection videos for the development of a computeraided diagnosis system. At current stage, the research of perforation detection and localization progress slowly, automatic image-based perforation detection is very challenge. Thus, we devote to the development of detection and localization of perforations in colonoscopic videos. In this paper, we proposed a supervised-learning method for perforations detection and localization in colonoscopic videos. This method uses dense layers in YOLO-v3 instead of residual units, and a combination of binary cross entropy and generalized intersection over union loss as the loss function in the training process. This method achieved 0.854 accuracy, 0.850 AUC score and 0.884 mean average precision for perforation detection and localization, respectively, as an initial study
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.