Sufficient lighting is sometimes required when surgeons watch the mediastinum through the 7x7cm thoracic window in
video-assisted thoracoscopic (VATS) lobectomy. It is thus important to develop the "ultimately localized solid-statelighting"
because the distance between the window and the surface of the lung is as short as 4-5 cm. Our new idea was to
place the module composed of red, green and blue light emitting diodes (RGB LEDs) at the tip of the retractor.
Compared to a conventional endoscopic lighting consisting of halogen lamp, this method has lead to the bright and
shadowless illumination within the entire thoracic cavity since the white RGB LEDs are emitted unidirectionally from
the cylinder-shaped camera component, moving the shadows from the surgical instruments to the side of the incision. It
also should be noted that we found an effective principle for controlling the color rendering of each biomaterial through
the synthesis of LED lighting spectra, by which the visual performance of surgeons can be coordinated. Therefore, we
believe that "medical RGB LEDs" will contribute to the safe operation, and will be developed to a standard lighting
system in clinical settings with bright surgical fields in the near future.
The distance between the LED and the surface of the target organ is about 4-5 cm, and we think this will become the "ultimate super-localized LED lighting". In an experiment with swine, we placed a LED module at the tip of the retractor. When compared to endoscopic lighting, this method illuminated the entire thoracic cavity more brightly. Since the light is emitted from the cylinder-shaped camera component, the light is unidirectional, and the shadows from the surgical instruments are moved to the side of the incision. Retractor LED lights provided enough light in the thoracic cavity. we believe that "medical white LEDs" can contribute in clinical settings as a light source for performing safe operations with bright surgical fields in the near future. Also, we use our LEDs for new real business. In the summer of 2004, LED lighting was world first used in the 1200 year-old Gion Festival for the first time in history as "a lighting device that does not destroy cultural assets by light heat". And the next is "Lighting at the "Diva status at diva gate" and the "Thousand Armed Avalokiteshwara in innermost sanctuary in the main hall" at Kiyomizudera in Kyoto". It was a great success, and we were invited back in the spring of 2005 and for future applications. We think this is the first real application of LEDs as an outdoor lighting device. The number of people who visit Kiyomizudera is 4000,000 annually, and LEDs were adopted to illuminate the diva gate.
Everywhere in the world, the highest quality and quantity of lighting is required during the surgical operations. However, the surgical approach has had many types and various angles, common ceiling surgical halogen shadow less lighting system cannot provide an adequate amount of beams because the surgeons' heads hinder the illuminations from reaching the operation field. Therefore, we have designed surgical lighting system composed of white LEDs equipped on both sides of goggles. In fact, we succeeded in the first internal shunt operation in the left forearm using the surgical LED lighting sytem on 11th Sept 2000. In the operation with sitting position, it was about 34 cm from the operation field to the surgeon's eye point. Therefore, in the next approach, we have to try the operations with usual standing position. To get the more powerful LED light source, we have tried to make "power white LED module" composed with Nichia white LEDs (NCCx002) on AlN plate. Then we have tried the general thoracic operation with LED goggles composed "power white LED modules" on 9th December 2002.
Everywhere in the world, the highest quality and quantity of lighting is required during the surgical operations. However, the surgical approach has had many types and various angles, common ceiling surgical halogen lighting system cannot provide an adequate amount of beams because the surgeons' heads hinder the illuminations from reaching the operation field. Here, we newly design surgical lighting system composed of white LEDs equipped on both sides of goggles, which controls the lighting beams to the gazing point. With this system, it is just needed for surgeons to wear light plastic goggles with high quality LEDs made by Nichia. In fact, we have succeeded in the first internal shunt operation in the left forearm using the surgical LED lighting system on 11th Sept 2000. The electrical power for the system was supplied from lithium-ion battery for 2 hours. Since the white LEDs used were composed of InGaN-blue-emitters and YAG-yellow-phosphors, the color rendering property was not sufficient in the reddish colors. Therefore, in the next approach, it is very important to develop the spectral distribution of white LED to render inherent color of raw flesh such as skin, blood, fat tissue and internal organs. To improve the color rendering in red colors, some adjustments should be given in the fluorescents layers. Design of goggle is also very important for cutting into the real practical market of white LEDs.
The first internal shunt operation in the left forearm has successfully been performed using the surgical lighting goggle composed of InGaN-yttrium aluminum garnet (YAG)-based white light emitting diode(LED) arrays. This system supplies a total luminous flux of about 200 lumen for several hours by driving with rechargeable Li-ion batteries. Further increase in luminous flux can be achieved by both the progress of emission efficiency of white LEDs and the development of dense packaging technique of LED chips. Moreover, the color rendering properties of white LEDs are inferior to the standard illuminant especially in violet, green and red spectral range. In this paper, several device structures are proposed for achieving power lighting and for higher color rendering properties. The key technology for power lighting is how to radiate the heat out of LED chips, and that for higher color rendering is how to add desired illumination-spectral-components to LEDs according to the application fields.
Everywhere in the world, the highest quality and quantity of lighting is required during the surgical operations. However, the surgical approach has had many types and various angles, common ceiling surgical halogen lighting system cannot provide an adequate amount of beams because the surgeons' heads hinder the illuminations from reaching the operation field. Here, we newly design surgical lighting system composed of white LEDs equipped on both sides of goggles, which controls the lighting beams to the gazing point. With this system, it is just needed for surgeons to wear light plastic goggles with high quality LEDs made by Nichia. In fact, we have succeeded in the first internal shunt operation in the left forearm using the surgical LED lighting system on 11th Sept 2000. The electrical power for the system was supplied from lithium-ion battery for 2 hours. Since the white LEDs used were composed of InGaN- blue-emitters and YAG-yellow-phosphors, the color rendering property was not sufficient in the reddish colors. Therefore, in the next approach, it is very important to develop the spectral distribution of white LED to render inherent color of raw flesh such as skin, blood, fat tissue and internal organs.
Dopamine hydrochloric acid salt in aqueous solution was excited at 266 nm Al2O3:Ti laser and the sufficient fluorescence emission peaking at 330 nm was detected with a streak camera. The fluorescence decay curve was fitted by 1- exponential functions, with the lifetime of approximately 0.80 ns. The influence of deep-UV laser excitation on cells is also discussed for the direct observation of dopamine in the living cells. In addition, it is needed to detect the dopamine fluorescence in the living cell sensitively, and separately from emission of other fluorescent species. When instrumental arrangement and time-resolved spectral analysis can make it possible to solve such problems, direct visualization of the secretion process of individual cells will be achieved by the laser-induced native fluorescence imaging microscopy, without using any additional fluorescent probes. This quantitative imaging technique will provide a useful noninvasive approach for the study of dynamic cellular changes and the understanding of the molecular mechanisms of information transporting processes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.