We present our research into a pulsed xenon lamp source for the treatment of psoriasis and other skin disorders. Various filtering techniques, lamp configurations, power supply configurations and delivery systems are discussed. Comparisons are made to existing treatment modalities. Cryogen cooling of the treatment site is discussed.
Nonablative skin resurfacing is a dermatologic procedure utilizing pulsed laser irradiation and dynamic cooling to induce selectively a wound healing response in the papillary and upper reticular dermis. Using temperature measurements of human skin provided by pulsed photothermal radiometry immediately following laser irradiation (lambda equals 1.32 micrometer), spatial distribution of thermal damage is predicted in response to various potential therapeutic laser- cryogen doses. Results of our analysis suggest that appropriate application of pulsed laser irradiation and cryogen spray cooling may be used to protect the epidermis and selectively confine thermal injury to the papillary and upper reticular dermis. Development of nonablative skin resurfacing will require understanding the relationship between the degree of dermal photocoagulation and the cutaneous wound healing response following laser irradiation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.