Photoluminescence excited by 325 nm laser light is used to investigate defect populations existing in different surface
flaws in high purity fused silica and to achieve a better understanding of laser damage mechanisms. Luminescence bands
peaking at 1.9, 2.1, 2.3, 2.7 and 3.1 eV have been detected in the spectral area ranging from 1.6 up to 3.6 eV. According
to the literature, the 2.3 eV band would be due to STE's (Self Trapped Excitons) relaxation. In order to study this
hypothesis, temperature dependent experiments have been driven in the 90 K-300 K range. For indentations as well as
laser damage, we show the evolution of luminescence spectra with temperature. Contrarily to the well known behavior
of STE's, which shows a change of several orders of magnitude for luminescence intensity, the 2.3 eV band is weakly
influenced by temperature decrease, from the ambient down to 90 K. The Gaussian decomposition of spectra allows
dividing the five luminescence bands in two categories. The first one corresponds to bands showing a significant
intensity enhancement with temperature decrease, and the second one to bands remaining insensitive to the fall in
temperature. That classification may provide helps in order to establish links between luminescence bands and defects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.