SCExAO at the Subaru telescope is a visible and near-infrared high-contrast imaging instrument employing extreme adaptive optics and coronagraphy. The instrument feeds the near-infrared light (JHK) to the integralfield spectrograph CHARIS. The spectropolarimetric capability of CHARIS is enabled by a Wollaston prism and is unique among high-contrast imagers. We present a detailed Mueller matrix model describing the instrumental polarization effects of the complete optical path, thus the telescope and instrument. From measurements with the internal light source, we find that the image derotator (K-mirror) produces strongly wavelength-dependent crosstalk, in the worst case converting ∼95% of the incident linear polarization to circularly polarized light that cannot be measured. Observations of an unpolarized star show that the magnitude of the instrumental polarization of the telescope varies with wavelength between 0.5% and 1%, and that its angle is exactly equal to the altitude angle of the telescope. Using physical models of the fold mirror of the telescope, the half-wave plate, and the derotator, we simultaneously fit the instrumental polarization effects in the 22 wavelength bins. Over the full wavelength range, our model currently reaches a total polarimetric accuracy between 0.08% and 0.24% in the degree of linear polarization. We propose additional calibration measurements to improve the polarimetric accuracy to <0.1% and plan to integrate the complete Mueller matrix model into the existing CHARIS post-processing pipeline. Our calibrations of CHARIS’ spectropolarimetric mode will enable unique quantitative polarimetric studies of circumstellar disks and planetary and brown dwarf companions.
SCExAO at the Subaru telescope is a visible and near-infrared high-contrast imaging instrument employing extreme adaptive optics and coronagraphy. The instrument feeds the near-infrared light (JHK) to the integral field spectrograph CHARIS. Recently, a Wollaston prism was added to CHARIS’ optical path, giving CHARIS a spectropolarimetric capability that is unique among high-contrast imaging instruments. We present a comprehensive and detailed Mueller matrix model describing the instrumental polarization effects of the complete optical path, thus the telescope and instrument, using measurements with the internal source and observations of standard stars. The 22 wavelength bins of CHARIS provide a unique opportunity to investigate in detail the wavelength dependence of the instrumental polarization effects. We find that the image derotator (K-mirror) produces strongly wavelength-dependent crosstalk, in the worst case converting ~95% of the incident linear polarization to circularly polarized light that cannot be measured. We fit the crosstalk of the half-wave plate (HWP) for all wavelengths with a simple two-parameter model of an achromatic HWP consisting of a layer of quartz and a layer of MgF2. While the magnitude of the telescope-induced polarization varies with wavelength, its angle varies solely with the altitude angle of the telescope. We show initial steps toward correcting on-sky data for the instrumental polarization effects, with which we aim to achieve a polarimetric accuracy <0.1% in the degree of linear polarization. Our calibrations of CHARIS’ spectropolarimetric mode enable unique quantitative polarimetric studies of circumstellar disks and planetary and brown dwarf companions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.