The Liverpool Telescope is a 2.0 metre robotic telescope that is operating unattended at the Observatorio del Roque de Los Muchachos, Spain. This paper gives an overview of the design and implementation of the telescope and its instrumentation and presents a snapshot of the current performance during the commissioning process. Science observations are under way, and we give brief highlights from a number of programmes that have been enabled by the robotic nature of the telescope.
As distributed systems are becoming more and more diverse in application there is a growing need for more intelligent resource scheduling. eSTAR Is a geographically distributed network of Grid-enabled telescopes, using grid middleware to provide telescope users with an authentication and authorisation method, allowing secure, remote access to such resources. The eSTAR paradigm is based upon this secure, single sign-on, giving astronomers or their agent proxies direct access to these telescopes. This concept, however, involves the complex issue of how to schedule observations stored within physically distributed media, on geographically distributed resources. This matter is complicated further by the varying degrees of constraints placed upon observations such as timeliness, atmospheric and meteorological conditions, and sky brightness to name a few.
This paper discusses a free market approach to this scheduling problem, where astronomers are given credit, instead of time, from their respective TAGs to spend on telescopes as they see fit. This approach will ultimately provide a community-driven schedule, genuine indicators of the worth of specific telescope time and promote a more efficient use of that time, as well as demonstrating a 'survival of the fittest' type selection.
The eSTAR Project uses intelligent agent technologies to carry out resource discovery, submit observation requests and analyze the reduced data returned from a network of robotic telescopes in an observational grid. The agents are capable of data mining and cross-correlation tasks using on-line catalogues and databases and, if necessary, requesting additional data and follow-up observations from the telescopes on the network. We discuss how the maturing agent technologies can be used both to provide rapid followup to time critical events, and for long term monitoring of known sources, utilising the available resources in an intelligent manner.
KEYWORDS: Telescopes, Java, Control systems, Data transmission, Optical instrument design, Control systems design, Human-machine interfaces, Robotics, Computer programming, Stars
This paper describes the design and implementation of the Next Generation Telescope Control System (NGTCS). It outlines the requirements of a generic telescope control system and presents an architectural solution to the requirements problem, and an implementation in Java. The modular design of the NGTCS enables a TCS application to be developed for virtually any telescope using the NGTCS core system, and developing Java classes for system-specific functionality. The Liverpool Telescope will use a TCS built with the NGTCS software.
KEYWORDS: Telescopes, Astronomy, Robotics, Databases, Astronomical telescopes, Space telescopes, Astrophysics, Prototyping, Control systems, Data archive systems
The e-STAR (e-Science Telescopes for Astronomical Research) project uses GRID techniques to develop the software infrastructure for a global network of robotic telescopes. The basic architecture is based around Intelligent Agents which request data from Discovery Nodes that may be telescopes or databases. Communication is based on a development of the XML RTML language secured using the Globus I/O library, with status serving provided via LDAP. We describe the system architecture and protocols devised to give a distributed approach to telescope scheduling, as well as giving details of the implementation of prototype Intelligent Agent and Discovery Node systems.
The cost effectiveness of modern telescope operations depends upon appropriate telescope system design. We explore telescope operating models and define the efficiency of telescope usage, using recent operational data. We investigate the efficiency of telescope use with respect to several generic types of operational programme. We derive a model of telescope operating efficiency and explore the operational implications of several telescope design factors and configurations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.