Single photon emitters within hosts with high refractive indices suffer from low collection efficiencies due to total internal reflection at the host interface. This can be alleviated through shaping the local refractive index environment, specifically through forming open cavities and allowing matching between the emission mode in the host and travelling mode in air. We design micropillars around single photon emitters within aluminium nitride via electromagnetic simulations and show that the collection efficiency can be increased by an order of magnitude compared to the base case. We fabricate the designs through standard clean room procedures and confirm collection enhancement through confocal microscopy.
Femtosecond laser writing shows great potential for novel 3D photonic architectures and high quality NV- quantum emitters in the bulk of diamond. However, the direct writing method cannot achieve nanometric placement of NV- centers near the surface of diamond, which is required for certain quantum sensing tasks. We will demonstrate a hybrid approach where the advantages of 3D optical waveguides by femtosecond laser writing and precise and shallow placement of NV- centers by ion implantation will be combined to form an integrated quantum sensor with record high performance.
We present our recent research on color centers in Aluminum Gallium Nitride which emit single photons up to room temperature. The mature processing technology which is available for group-III-nitrides and the host material’s optical transparency in the visible and infra-red opens up the possibility of novel applications in nanophotonics and quantum devices. We are working to create suspended photonic devices, including waveguides and photonic crystal cavities, which we will show can guide and enhance the color center emission.
Diamond’s nitrogen-vacancy (NV) center has been shown as a promising candidate for sensing applications and quantum computing because of its long electron spin coherence time and its ability to be found, manipulated and read out optically. An integrated photonics platform in diamond would be useful for NV-based magnetometry and quantum computing, in which NV centers are optically linked for long-range quantum entanglement due to the integration and stability provided by monolithic optical waveguides. Surface microchannels in diamond would be a great benefit for sensing applications, where NV centers could be used to probe biomolecules.
In this work, we applied femtosecond laser writing to form buried 3D optical waveguides in diamond. By engineering the geometry of the type II waveguide, we obtained single mode guiding from visible to the infrared wavelengths. Further, we demonstrate the first Bragg waveguide in bulk diamond with narrowband reflection. We show the formation of single, high quality NV centers on demand in ultrapure diamond using a single pulse from a femtosecond laser. With these building blocks in place, we fabricated an integrated quantum photonic circuit containing optical waveguides coupled to NV centers deterministically placed within the waveguide. The single NVs were excited and their emission collected by the optical waveguides, allowing easy interfacing to standard optical fibers. We also report high aspect ratio surface microchannels, which we will integrate with laser-written NVs and waveguides, paving the way for ultrasensitive, nanoscale resolution biosensors.
Diamond’s nitrogen-vacancy (NV) centers show great promise in sensing applications and quantum computing due to their long electron spin coherence time and their ability to be located, manipulated and read out using light. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532- nm laser light, even at room temperature. The NV's states are isolated from environmental perturbations making their spin coherence comparable to trapped ions. An important breakthrough would be in connecting, using waveguides, multiple diamond NVs together optically. However, the inertness of diamond is a significant hurdle for the fabrication of integrated optics similar to those that revolutionized silicon photonics. In this work we show the possibility of buried waveguide fabrication in diamond, enabled by focused femtosecond high repetition rate laser pulses. We use μRaman spectroscopy to gain better insight into the structure and refractive index profile of the optical waveguides.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.