Tethered capsule endomicroscopy (TCE) is a recently developed form of in vivo microscopy based on optical coherence tomography (OCT). With TCE, a small tethered pill is swallowed, procuring high resolution microscopic images of the esophageal wall. TCE does not require sedation and is thus a more rapid and convenient procedure comparing to traditional endoscopic examination. Our group and others have successfully conducted OCT-TCE in pilot, single-center studies that demonstrated the potential of this technology for upper GI tract diagnosis. Here, we demonstrate and evaluate the feasibility and safety of a next generation OCT-TCE system and device in patients with Barrett’s esophagus (BE) and report the initial longitudinal analysis of the natural history of BE.
The Tearney Lab at the Massachusetts General Hospital (MGH) has conducted a study using Tethered Capsule Endomicroscopy (TCE), a technique that involves swallowing a tethered capsule device that circumferentially scans an optical coherence technology (OCT) beam inside the body as it traverses the gastrointestinal tract. Throughout the procedure, microscopic images of the esophagus are acquired in real time in an unsedated subject. OCT TCE was used to screen for Barrett’s Esophagus in a setting of 2 primary care practices at MGH.The OCT TCE show promising results identifying BE in a primary care population.
KEYWORDS: Optical coherence tomography, Endomicroscopy, Intestine, Endoscopy, Inflammation, Biopsy, 3D image processing, Visualization, Control systems
Environmental Enteric Dysfunction (EED) is a poorly understood condition of the small intestine that is prevalent in regions of the world with inadequate sanitation and hygiene. EED affects 25% of all children globally and causes over a million deaths each year. The condition is associated with increased intestinal permeability, bacterial translocation, inflammation and villous blunting. The loss of absorptive area and intestinal function leads to nutrient malabsorption, with long term outcomes characterized by stunted growth and neurocognitive development. Currently, the only way to directly evaluate the morphology of the intestine is endoscopy with mucosal biopsy. Yet because EED is endemic in low and middle-income countries, endoscopy is untenable for studying EED. As a result, the diagnosis of EED and the assessment of the efficacy of EED interventions is hampered by an inability to evaluate the intestinal mucosa.
Our lab has previously developed a technology termed tethered capsule OCT endomicroscopy (TCE). The method involves swallowing an optomechanically-engineered pill that generates 3D images of the GI tract as it traverses the lumen of the organ via peristalsis, assisted by gravity. In order to study the potential of using TCE to investigate EED, we initiated and conducted a TCE study in adolescents at Aga Khan Medical Center in Pakistan. To make swallowing easier, the tethered capsule’s size was reduced from 11x25 mm to 8x22 mm. Villous morphologic visualization was enhanced by building a notch (x mm deep, y mm wide) in the capsule’s imaging window. To date, 26 Pakistani subjects with ages ranging from 14 to 18 y/o (16.4 +/- 1.0) have been enrolled and imaged. A total of 19 subjects were able to swallow the capsule. Of those, 9 successfully passed through the pylorus, allowing successful microscopic imaging of the entire duodenum. There were no adverse events in any of the cases. Maximum villous height and width were measured from 3 randomly chosen, representative frames from each Pakistan subject as well as a matching number from US controls. Preliminary results, comparing Pakistani vs US villous morphology, indicated that subjects from Pakistan have shorter (628.6 +/- 22.0 um and 492.3 +/- 13.2 um, respectively, p< 0.0001) and wider duodenal villi (244.9 +/- 8.8 um and 293.4 +/- 13.2 um, respectively, p< 0.0001). These findings suggest that OCT TCE of the duodenum may be a useful tool for evaluating villous morphology in EED.
While the most common method used to evaluate and survey patients with Barrett’s Esophagus (BE) is endoscopic biopsy, this procedure is invasive, time-consuming, and suffers from sampling errors. Moreover, it requires patient sedation that increases cost and mandates its operation in specialized settings. Our lab has developed a new imaging tool termed tethered capsule endomicroscopy (TCE) that involves swallowing a tethered capsule which utilizes optical coherence tomography (OCT) to obtain three-dimensional microscopic (10µm) images of the entire esophageal wall as it traverses the luminal organ via peristalsis or is retrieved by pulling up tether. As opposed to endoscopy, TCE procedure is non-invasive, doesn’t require patient sedation and mitigates sampling error by evaluating the microscopic structure of the entire esophagus. The merits of TCE make it a suitable device to investigate the microscopic natural history of BE in a longitudinal manner.
Here, we present our initial experience of a multicenter (5-site) clinical trial to study the microscopic natural history of BE. The TCE device used for the study is the new generation capsule with the ball lens optical configuration and a distal scan stepper motor, which provides 30µm (lateral) resolution and 40Hz imaging rate. The portable OCT imaging system is a custom in-house built swept source system and provides 7µm (axial) at a 100 kHz A-line rate with a center wavelength of ~1310 nm. To date, we have successfully enrolled 69 subjects at all sites (MGH: 33, Columbia University: 11, Kansas City VA: 10, Mayo Jacksonville: 8, Mayo Rochester: 7) and 59 have swallowed the capsule (85.5%). There have been no reported adverse events associated with TCE procedure. High-quality OCT images were reliably obtained from patients who swallowed the device, and BE tissues were identified by expert readers. Our initial experience with TCE in a multicenter study demonstrates that this technology is easy to use and efficient in multiple clinical settings. Completion of this longitudinal study is likely to provide new insights on the temporal progression of BE that may impact management strategies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.