Monolithic integration of III–V materials and devices on CMOS compatible on‐axis Si (001) substrates enables a route of low‐cost and high‐density Si‐based photonic integrated circuits. Inversion boundaries (IBs) are defects that arise from the interface between III–V materials and Si, which significantly lowers the quality of III–V materials on Si. Here, a novel technique to achieve IB‐free GaAs monolithically grown on on‐axis Si (001) substrates by realizing the alternating straight and meandering single atomic steps on Si surface has been introduced via all-molecular beam epitaxy approach without the use of double Si atomic steps, which was previously believed to be the key for IB‐free III–V growth on Si. The periodic straight and meandering single atomic steps on Si surface are results of high‐temperature annealing of Si buffer layer. As a demonstration, an electrically pumped InAs quantum‐dot laser has been fabricated based on this IB‐free GaAs/Si platform with a maximum operating temperature of 120 °C. These results can be a major step towards monolithic integration of III–V materials and devices with the mature CMOS technology.
An optoelectronic feedback structure is introduced to a distributed Bragg reflector mode-locked laser diode (DBR-MLLD) to improve its phase noise performance. Optical pulses with a repetition rate of 40 GHz, a pulse width of 5.2 ps, and a center wavelength tuning range of 4.3 nm are demonstrated. The phase noise of the hybrid mode-locked DBR-MLLD has been reduced by 44 dB to a level of -97 dBc/Hz at a 10 kHz frequency offset from the carrier frequency comparing to the passive mode-locked state.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.