Suspensions carrying deformable inclusions are ubiquitous in nature and applications. Hence, high-throughput characterization of the mechanical properties of soft particles is of great interest. Recently, a non-invasive optofluidic technique has been developed for the measurement of the interfacial tension between two immiscible liquids.1, 2 We adapt such technique to the case of soft solid beads, thus designing a non-invasive optofluidic device for the measurement of the mechanical properties of deformable particles from real-time optical imaging of their deformation. The device consists of a cylindrical microfluidic channel with a cross-section reduction in which we make initially spherical soft beads flow suspended in a Newtonian carrier. By imaging the deformation of a particle in real time while it goes through the constriction, it is possible to get a measure of its elastic modulus through a theoretically derived-correlation. We provide both experimental and numerical validation of our device.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.