As shown in previous work, quantum contextuality can be represented by interference effects in a three-path interferometer. A Hardy-like paradox is obtained when the absence of photons in two internal paths seems to contradict the presence of photons in a specific input port. Here, we consider the effects of counterfactual control on this scenario by analyzing the changes to the paths through the interferometer when the seemingly impossible input path is blocked. The effects on photons that never interact with the absorber in the blocked path reveals a characteristic signature of quantum contextuality that may help to explain why quantum interference is incompatible with measurement independent realities.
Quantum contextuality can be observed in three path interferometers, suggesting a fundamental contradiction between wave propagation and particle propagation inherent in the wave-particle dualism. Here, we investigate this contradiction in a three path interferometer specifically designed to illustrate the paradoxical aspects of single particle interference. A particularly clear violation of non-contextual assumptions is obtained when interference effects suppress detection probabilities to zero in paths that seem to be necessary to explain the observation of photons in the output. This contradiction between detection probabilities in the paths and detection probabilities in the output cannot be explained by any assignment of photon paths through the interferometer, demonstrating a fundamental incompatibility of wave propagation and particle propagation.
It is commonly assumed that interference patterns contain no information about the path taken by the individual photons. Surprisingly, recent results based on the analysis of weak interactions with probe qubits suggest that this may be a misconception. Here we show that the fluctuations of detection events in quantum interference patterns are correlated with the fluctuations of particle presence in the paths. It is pointed out that this correlation is a general feature of quantum fluctuations that distinguishes them from classical noise.
Energy-time entanglement can enhance two photon absorption by combining a precise two photon resonance with temporal correlations between the arrival times of the two photons. In general, the optimal timing of photon arrival is determined by the dynamics of the system between the initial and the final excitations. In this presentation, we show that the optimal timing of photon arrival corresponds to a specific phase dispersion in the frequency difference of the two photons. The absorption cross-section of energy-time entangled photons can be enhanced beyond the rate observed for optimal photon coincidence by adjusting the phase dispersion of one of the photons to match the optimal characteristics. We determine the maximal enhancement factor as a function of the bandwidth of the intermediate states and their detuning relative to the average photon frequency. Significant additional enhancements can be achieved when the bandwidth of the intermediate states is very narrow.
Two photon absorption processes are known to be sensitive to energy-time entanglement between the absorbed photons. It should therefore be possible to characterize the energy-time entanglement by observing the two photon absorption cross-sections in a known medium controlled by external conditions. In this paper, we analyze the correspondence between two photon absorption and projective measurements of the two photon wavefunction. It is shown that the two photon absorption process is described by a projection onto an energy-time entangled two photon state, indicating that the absorption cross-section can provide direct evidence of entanglement between the absorbed photon pairs.
It is usually assumed that the energy dependent velocity of a photon moving in a dispersive medium is given by the group velocity at the frequency corresponding to the energy of the photon. This assumption corresponds to the notion that the velocity of a massive particle is determined by its momentum. However, a direct verification of this assumption for a single photon is impossible, since the velocity can only be obtained by measuring the position at two different times, and time-resolved measurements cannot also resolve photon energies. In previous work, I have shown how this limitation can be circumvented for position and momentum, demonstrating that quantum particles do not obey newton's first law in free space. Here, I apply a similar strategy to construct a quantum state in which a non-vanishing percentage of the photons travel a distance x in time t even though the probability of finding any photons with a group velocity of v = x/t is close to zero. Specifically, the suppression of frequencies with group velocities in the vicinity of v = x/t is achieved by destructive interference, while the probabilities of detecting the photons in the initial time window or in the final time window are simultaneously enhanced by constructive interferences between the mutually overlapping wavefunctions. Based on the statistical evidence obtained from separate measurements of single photon arrival times and frequencies, it is then possible to show that the group velocity does not represent the actual velocity at which individual photons propagate through the dispersive medium.
Since the wavefunction of a photon only describes the probability of photon detection in time and space, it is impossible to derive uniquely defined trajectories describing the path taken by the photon between emission and detection. However, it is possible to test whether a particular set of trajectories is consistent with the statistics observed at different times for photons in the same initial state. Recently, I have shown that quantum interference effects between position and momentum can result in a violation of inequalities associated with motion along straight lines. Here, I present a more detailed analysis on the origin of the effect and its relation with other experimentally observable aspects of quantum statistics such as weak measurements and quantum tomography. It is shown that the interference pattern between a quantum state component of well-defined position and a quantum state component of well-defined momentum describes a modified causality relation between the positions detected at different times. The phase of the interference pattern is identified with the classical action of particle motion and the relation between uncertainty and causality is considered. The specific case of single photon wavefunctions is used to explain the possibilities and limitations of control at the ultimate quantum limit.
Multiphoton interference results in a wide variety of non-classical photon number statistics, including characteristic signatures of entanglement between two or more sets of optical modes. Here, we consider the photon number statistics observed after applying discrete Fourier transformations (DFTs) to bipartite entangled states generated using single photon sources and beam splitters. It is shown that the output photon number states of DFTs are eigenstates of a translational mode shifting operator in the input. The complex eigenvalues of the mode shift can be identified by a phase number K obtained from the output photon distribution. For each output distribution, the possible input states are limited to mode shift eigenstates with the same K-value. Using this mode shift rule, we can identify the quantum coherence between different photon number distributions in the input with experimentally observable K-values in the output of the DFT. In the case of multi-photon entanglement obtained by post-selection and beam splitting single photons, this coherence is non-local, resulting in correlated pairs of K-values that always sum up to zero. We can therefore observe both the correlations between the input photon number distributions and a complementary correlation between the output photon numbers of two DFTs to obtain a reliable characterization of the entanglement between the two multi-mode multi-photon systems. Importantly, the K-value allows a classification of large sets of possible photon number distributions, resulting in a significant simplification of the experimental evaluation of the multi-photon output statistics and opening up the road towards more efficient applications of non-classical multi-photon states
Quantum information science addresses how the storage, processing, and transmission of information are affected by uniquely quantum mechanical phenomena, such as superposition and entanglement. New technologies that harness these quantum effects are beginning to be realized in the areas of communication, information processing and precision measurement. For the realization of a universal gate set, by which, in principle, any quantum information task can be realized, two-qubit gates have been demonstrated and have been used to realize small-scale quantum circuits. However, scalability is becoming a critical problem. It may therefore be helpful to consider the use of three-qubit gates, which can simplify the structure of quantum circuits dramatically. Although both the controlled-SWAP (CSWAP) gate (also called Fredkin gate) and the controlled-controlled-NOT gate (also called Toffoli gate) are representative three-qubit gates, the Fredkin gates can be directly applied to many important quantum information protocols, e.g., error correction, fingerprinting, optimal cloning, and controlled entanglement filtering. Here we report a realization of the Fredkin gate using a photonic quantum circuit, following the theoretical proposal by Fiurasek. We achieve a fidelity of 0.85 for the classical truth table of CSWAP operation and an output state fidelity of 0.81 for a generated 3-photon Greenberger-Horne-Zeilinger (GHZ) state. We also confirmed that the gate is capable of genuine tripartite entanglement with a quantum coherence corresponding to a visibility of 0.69 for three-photon interferences. From these results, we estimate a process fidelity of 0.77, which indicates that our Fredkin gate can be applied to various quantum tasks.
Possible error sources in an experimentally realized linear-optics controlled-Z gate[1] are analyzed by considering the deviations of the beam splitting ratios from the ideal values (δRH,δRV), the polarization-dependent phase shift (birefringence) of the optical components (δφ) and the mode mismatch of input photons (δξ). It is found that the error rate is linearly dependent on δRV and δξ , while the dependence on δRH and δφ is approximately quadratic. As a practical result, the gate is much more sensitive to small errors in RV than in RH. Specifically, the reflectivity error for vertical polarization must be less than 0.1% to realize a gate with an error of less than 0.1%, whereas the reflectivity error for horizontal polarization can be up to 1%. It is also shown that the effects of different error sources are not independent of each other (linear error model). Under certain conditions, the deviation from the linear error model exceeds 10% of the total error. The method of analysis used illustrates the basic features of errors in general linear optics quantum gates and circuits, and can easily be adapted to any other device of this type.
Quantum information processes utilize the potential of quantum coherence to achieve improvements in communication and computation protocols. In order to develop appropriate technologies, it is therefore necessary to test the successful implementation of quantum coherent operations in experimental devices. In this presentation, it is shown how the quantum coherent performance of a device can be evaluated from complementary test measurements. Despite the limitation of test measurements to only two orthogonal basis sets of states, this method provides a surprisingly detailed and intuitively accessible picture of errors in quantum operations, making it possible to assess the quantum parallelism of non-classical operations in terms of the directly observable "classical" device properties.
The nonlinear optical response obtained from a single two level atom in a one-sided cavity is studied using a model system, where a infinite atomic layer sits in front of a reflecting mirror. When the atomic layer is placed at the antinode of input field, the result given by finite difference time domain method coupled with the optical Bloch equations is consistent with previous analytical result [ H F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, J. Opt. B 5, 218 (2003) ] based on one-dimensional atom model.
A scheme to distinguish entangled two-photon-polarization states (ETP) from two independent it entangled one-photon-polarization states is proposed. Using this scheme, the experimental generation of ETP by parametric down-conversion is confirmed through the anti-correlations between three orthogonal two-photon-polarization states. The estimated fraction of ETP among the correlated photon pairs is 37% in the present experimental setup.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.