Ultrasound has been recently explored as a new modality for neural modulation. However, one of the challenges in ultrasound neural modulation is that delivery of transcranial ultrasound would inevitably go through the skull, and eventually reach the cochlear through bone transduction. Moreover, the presence of skull will compromise ultrasound focus, resulting in poor spatial resolution. Here, we developed a miniaturized Fiber-Optoacoustic Converter (FOC), which has a diameter of 600 μm, and can convert nano-second laser pulses into omni-directional acoustic waves through the optoacoustic effect. The ball shaped FOC is composed of one ZnO /epoxy based diffusion layer and two graphite/epoxy based absorption layer. The radiofrequency spectrum of the generated US frequency ranges from 0.1-5 MHz, with multiple frequencies peaks at 0.5, 1 and 3MHz. Using this FOC system, we show that ultrasound can directly activate individual cortical neuron in vitro, and generate intracellular Ca2+ transient without neural damage. We next demonstrate that the FOC is activates neurons with a radius of 500 μm around the FOC tip, delivering superior spatial resolution. The stimulation effect is specific to neurons, but not glial cells. We also provide evidence of transient mechanical disturbance of neuronal membrane as the mechanism for FOC neural modulation. Finally, we combine FOC neural modulation with electrophysiology, and achieve direct and spatially confined neural stimulation in vivo.
Generation of ultrasound using the optoacoustic effect has received increasing attention in the field of imaging and translational medicine. However, none of the current optoacoustic converters has been used for neural modulation. Here, we developed a miniaturized Fiber-Optoacoustic Converter (FOC), which has a diameter of 600 μm, and can convert nano-second laser pulses into acoustic waves through the optoacoustic effect. The ball shaped FOC is composed of one ZnO /epoxy based diffusion layer and two graphite/epoxy based absorption layer. The radiofrequency spectrum of the generated US frequency ranges from 0.1-5 MHz, with multiple frequencies peaks at 0.5, 1 and 3MHz. Compared to traditional ultrasound transducers, the FOC system has the advantages of miniaturized size, superior spatial resolution, and produces omnidirectional propagating acoustic wave. Using this FOC system, we show that ultrasound can directly activate individual cortical neuron in vitro with a radius of 500 μm around the FOC tip, and generate intracellular Ca2+ transient without neural damage. Neural activation is the consequence of mechanical disturbance of neuronal membrane, rather than direct laser or photothermal stimulation. Finally, we combine FOC neural modulation with electrophysiology, and achieve direct and spatially confined neural stimulation in vivo. The FOC system opens new possibilities to use optoacoustic effect as a new method for precise neural modulation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.