The capability to engineer and characterize high dimensional states has become a crucial request in the quantum information field. The quantum walk dynamics proved to be a suitable resource for developing general quantumstate engineering protocols. Here, we experimentally verified the flexibility of an engineering protocol based on a one-dimensional quantum walk in the Orbital Angular Momentum (OAM). Although this degree of freedom has found several applications in the quantum information field, extract the information stored in them appears to be difficult. Therefore, we employ machine learning protocols to classify and characterize particularly structured beams endowed with a not uniform distribution of the polarization on the transverse plane. Moreover, we prove that by modeling the engineering process through a refined model it is possible to improve the performances of measurement techniques such as holographic projection and machine-learning based classification. These results represent a further investigation in the manipulation and detection of OAM modes coupling the photonics platforms with machine-learning protocols.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.