We demonstrate microring lasers based on Si3N4 optical waveguides cladded with MAPbBr3 quantum dots composite film. Si3N4 microrings are designed and fabricated with electron beam (E-beam) lithography and inductively-coupled plasma reactive-ion-etching followed by spin coating a MAPbBr3 quantum dots composite film on them. We clearly observe the lasing modes with narrow linewidths for both TE- and TM-polarization modes when the microrings are optically pumped with a nanosecond laser. The experimental results show that the laser has a typical linewidth of 0.23 nm and a minimum pump power of 8.46 μJ/cm2.
Quantum dots have been considerred to be suitable candidates for down-shifting applications. The integration of quantum dots with Si photodetector provide low cost method to extend the reponse in the UV region. However, the lack of suitable processing technique reduce the reposne in visible region. In this work, we firstly report the integration of in-situ fabricated perovskite quantum dots embedded composite films (PQDCF) as down-shifting materials for enhancing the ultraviolet (UV) response of silicon (Si) photodetectors toward broadband and solar-blind light detection. External quantum efficiency measurements show that the UV response of PQDCF coated Si photodiodes greatly improved from near 0% to at most of 50.6±0.5% @ 290 nm. As compared to the calculated maximum value of 87%, the light coupling efficiency of the integrated device is determined to be 80%@395 nm, suggesting an efficient down-shifting process. Furthermore, PQDCF was also successfully adapted for electron multiplying charge coupled device (EMCCD) based image sensor. The PQDCF coated EMCCD shows linear response with high-resolution imaging under illumination at 360 nm, 620 nm and 960 nm, implying the ability of broadband light detection in the UV, visible (VIS) and near infrared (NIR) region. Furthermore, a solar-blind UV detection was demonstrated by integrating a solar-blind UV filter with PQDCF coated EMCCD. In all, the use of PQDCF as luminescent down-shifting materials provides an effective and low-cost way to improve the UV response of Si photodetectors.
KEYWORDS: Polymers, Solar cells, Heterojunctions, Composites, Electron transport, Energy efficiency, Photovoltaics, Nanoparticles, Absorption, Solar energy
We report photovoltaic devices based on composites of a branched nanoheterostructure containing a CdTe core and CdSe arms, CdTe(c)-CdSe(a), combined with either poly(3-hexylthiophene), P3HT, or poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)], PCPDTBT, with solar power conversion efficiencies of 1.2% and 1.8%, respectively. A comparison with previously reported composite devices of a related branched nanoheterostructure: CdSe(c)-CdTe(a) reveals an improved device performance that is attributed to a better electron percolation pathway provided by the dominant, higher electron affinity CdSe arms of the nanoheterostructures.
Proceedings Volume Editor (2)
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.