Ultra-precision measurement technology is the cornerstone of ultra-precision machining and manufacturing technology, and is an essential component of the national modern advanced measurement system. chromatic confocal sensors (CCS), with their advantages of high accuracy, fast measurement speed, wide adaptability to tested surface, and non-contact measurement capability, have become an important research hotspot in the field of ultra-precision measurement. Due to the low scanning efficiency of point chromatic confocal sensors, which can only obtain height information for a single point at a time, line chromatic confocal sensors (LCCS) has developed rapidly in recent years. The LCCS can simultaneously obtain height information for thousands of points (such as 2048 points) along a line, and the three-dimensional topography of the measured surface can be obtained through several one-dimensional scans, greatly improving measurement efficiency. It has been widely applied in various advanced manufacturing fields. Firstly, the working principle of the LCCS is introduced, and the key components affecting its performance are analyzed. Then, the research progress of the LCCS is introduced, followed by the research progress of its metrological calibration. Next, the measurement applications of the LCCS are summarized. Finally, the application development of the LCCS are summarized and prospected.
An automatic defect detection method for the mobile phone curved glass based on machine vision is proposed and implemented to estimate the plane images, edge images, and R-angle images of the mobile phone curved glass. Moreover, different defect size can be obtained. The experimental results show the consistency with the image measurement instrument, and the common scratches, stains, scratches and bubbles on the curved glass surface of mobile phone can be accurately extracted by the proposed algorithm, with a dimensional accuracy within 20μm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.