The preliminary results of a study on the effect of the membrane deformation on the optical response of the distributed Bragg reflector, that is based on a stack of such membranes, are presented. The analysis is applied to airgap-based optical filters, which offer an enhanced refractive index contrast and hence are highly promising for optical MEMS devices. The available methods and materials in MEMS technology would make fabrication of such devices feasible, but the optical requirements impose strict geometrical implications on the membrane structure. Although (an overall) tensile stress in membrane is expected to result in a flat structure after the release, a stress gradient results in a deformed structure. A combined finite element and finite-difference time- domain method has been utilized in this work to study the effects of a stress gradient in a distributed Bragg reflector. The results on the effects of both a linear and a non-linear stress gradient are presented. It is shown that a non-linear stress profile results in twice the deformation and a further reduction of optical performance.
The design of a metamaterial-based absorber for use in a MEMS-based mid-IR microspectrometer is reported. The microspectrometer consists of a LVOF that is aligned with an array of thermopile detectors, which is fabricated on a SiN membrane and coated with the absorber. Special emphasis is put on the CMOS compatible fabrication, which results in an absorber design based on Al disc resonators and an Al background plane that are separated by an SiO2 layer. Wideband operation over the 3-4 μm spectral range is achieved by staggered tuning of four Al disk resonators in one 1.5 x 1.5 μm2 unit cell, using four different values of the radius of the Al disk between 0.50 μm and 0.63 μm and an SiO2 layer thickness of 150 nm. Simulations reveal an average absorption of about 95% with a ±4% ripple at normal incidence, which reduces to about 80% absorption at a 20° incidence angle. The influence of material choice and dimensions on a single absorption peak was studied and the magnetic polariton was identified as the underlying mechanism of absorption.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.