The restricted field of view of traditional camera technology is increasingly limiting in many relevant applications such
as security, surveillance, automotive, robotics, autonomous navigation or domotics. Omnidirectional cameras with their
horizontal field of view of 360° would be ideal devices for these applications if they were small, cost-effective, robust
and lightweight. Conventional catadioptric system designs require mirror diameters and optical path lengths of several
centimeters, often leading to solutions that are too large and too heavy to be practical. We are presenting a novel optical
design for an ultra-miniature camera that is so small and lightweight that it can be used as a key navigation aid for an
autonomous flying micro-robot. The catadioptrical system consists of two components with a field-stop in-between: the
first subsystem consists of a reflecting mirror and two refracting lens surfaces, and the second subsystem contains the
imaging lens with two refractive surfaces. The field of view is 10°(upward) and 35°(downward). A field stop diameter of
1 mm and a back focal length of 2.3 mm have been achieved. For
low-cost mass fabrication, the lens designs are
optimised for production by injection moulding. Measurements of the first omnidirectional lens prototypes with a high-resolution
imager show a performance close to the simulated values concerning spot size and image formation. The total
weight of the optics is only 2 g including all mechanical mounts. The system's outer dimensions are 14.4 mm in height,
with a 11.4 mm × 11.4 mm foot print, including the image sensor and its casing.
We report on passively mode-locked think disk lasers with up to 60 W average power, nonlinear pulse compression to 33 fs with 18 W average power, and a fiber-feedback parametric oscillator generating 15 W in the 1.5-μm region.
We discuss the latest achievement on passively mode-locked high-power lasers, delivering tens of watts of average power in sub-picosecond pulses. The most promising concept is that of the passively mode-locked thin disk Yb:YAG laser which can so far generate up to 50 W of average power in sub-picosecond pulses.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.