The ubiquitous nature of microplastics in marine environments poses a significant threat to Atlantic salmon aquaculture, and fish in general. Mucosal surfaces are continuously exposed to microparticles – such as the skin epithelial layer with highly migrating keratocyte cells. This study applied the capabilities of Linnik-based Quantitative Phase Microscopy (QPM) equipped with a pseudo-thermal light source (PTLS) to examine the interactions between polystyrene microplastics (MPs) and Atlantic salmon keratocytes. The PTLS enables the QPM system to achieve high spatial phase sensitivity, allowing for the observation of precise morphological changes within the cell and migration in real time. Our study shows that cells that were exposed to polystyrene MPs exhibited dynamic fluctuations of the lamellipodia and provide evidence for early-stage phase membrane invaginations around the beads indicative of phagocytic activity. Implementation of QPM based on PTLS is a high-speed, non-invasive, label-free approach that provides vital insights into the morphological dynamics of MP exposure. This research not only contributes to the understanding of cellular morphological responses to microplastics in Atlantic salmon but also highlights the utility of advanced QPM imaging techniques from an environmental toxicology perspective.
Optical nanoscopy allows to study biological and functional processes of sub-cellular organelles. In structured
illumination microscopy (SIM) the sample is illuminated with a grid-like interference pattern to encode higher spatial
frequency information into observable Moiré patterns. By acquiring multiple images and a computation trick a superresolved
image is obtained. SIM provides resolution enhancement of 2X in each axis as compared to conventional
microscopes. For a visible light, SIM provides an optical resolution of 100 nm. The challenges associated with optical
nanoscopy of a living cell are photo-toxicity, special dye requirements and artifacts due to cell movement. SIM works
with conventional dyes and is a wide-field technique making it suitable for imaging living cells. In this work, we will
discuss the opportunities and challenges of imaging living cells using SIM. Two applications of optical nanoscopy of
living cells will be discussed; a) imaging of mitochondria in a keratinocyte cell and
Optical microscopy based on fluorescence has emerged as a vital tool in modern bio-medical imaging and diagnosis.
Super-resolution bio-imaging allows gathering information from sub-cellular organelles. In structured illumination
microscopy (SIM) the sample is illuminated with a grid-like interference patterns to encode higher spatial frequencies
information into observable images (Moiré fringes). A super-resolved image is then decoded using computational trick.
In this work, we used SIM to acquired super-resolved optical images of mitochondria from a live keratinocyte cell (see
Fig 1). SIM provides resolution enhancement of 2X in each axis and contrast enhancement of 8X on a projected image.
Time-lapsed imaging was used to study the dynamics of mitochondria in a live cell.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.