Metal halide perovskite solar cells (PSCs) remain one of the most discussed and researched materials in the world due to their promising materials characteristics and performance metrics. PSCs possess qualities that find applications in civilian and military sectors. PSCs have been demonstrated to have power conversion efficiencies (PCE) of over 24%, 30% reduction in deposition costs, direct band gap with tunability ranging from 1.1-1.8 eV, and the ability for synthesis at room temperature. This correspondence seeks to shed light on the current Department of Defense (DoD) efforts in PSCs, as well as demonstrate reduction in cost, environmental impact, and CO2 footprint. Successes in stabilization of the materials and challenges to be overcome for perovskites are discussed. This work shows the possibility of integrating perovskite materials with existing mature solar panel technologies for successful marketization of perovskites and diversification of applications. Furthermore, this work demonstrates the opportunities that are presented by perovskite materials to the DoD community and unique challenges that are overcome with the application of this technology.
Targeted, sequential deposition of metals using localized surface plasmon resonance (LSPR) is a promising fabrication route for solar fuel catalysts and sensors. This work examines liquid-phase, reductive photodeposition of platinum (Pt) nanoparticles onto the longitudinal ends of gold nanorods (AuNR) under surface plasmon excitation. Reductive Pt nucleation is initiated by plasmonic hot electrons at the Au-liquid interface, whose sites are governed by the plasmon polarity. In this work, in situ spectroscopic monitoring of the photodeposition process permitted real-time feedback into AuNR surface functionalization with the Pt precursor, Pt growth kinetics under monochromatic AuNR LSPR excitation, and their evolving light-matter interactions. Energy dispersive spectroscopy (EDS) mappings show Pt deposition was localized toward the AuNR ends. Coordinated X-ray photoelectron spectroscopy (XPS) measurements with density functional theory (DFT) calculations of the Pt-decorated AuNR density of states (DOS) elucidated optoelectronic behavior. Catalytic photodeposition using plasmonic hot electrons provide an economical path towards targeted, hierarchal assembly of multi-metallic nanoarchitectures at ambient conditions with specified optoelectronic activity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.