The new NASA Enhanced MODIS Airborne Simulator (eMAS) is based on the legacy MAS system,
which has been used extensively in support of the NASA Earth Observing System program since
1995. eMAS consists of two separate instruments designed to fly together on the NASA ER-2 and
Global Hawk high altitude aircraft.
The eMAS-IR instrument is an upgraded version of the legacy MAS line-scanning spectrometer,
with 38 spectral bands in the wavelength range from 0.47 to 14.1 μm. The original LN2-cooled
MAS MWIR and LWIR spectrometers are replaced with a single vacuum-sealed, Stirling-cooled
assembly, having a single MWIR and twelve LWIR bands. This spectrometer module contains a
cold optical bench where both dispersive optics and detector arrays are maintained at cryogenic
temperatures to reduce infrared background noise, and ensure spectral stability during high altitude
airborne operations.
The EMAS-HS instrument is a stand-alone push-broom imaging spectrometer, with 202 contiguous
spectral bands in the wavelength range from 0.38 to 2.40 μm. It consists of two Offner
spectrometers, mated to a 4-mirror anastigmatic telescope. The system has a single slit, and uses a
dichroic beam-splitter to divide the incoming energy between VNIR and SWIR focal plane arrays.
It will be synchronized and bore-sighted with the IR line-scanner, and includes an active source for
monitoring calibration stability.
eMAS is intended to support future satellite missions including the Hyperspectral Infrared Imager (
HyspIRI,) the National Polar-orbiting Operational Environmental Satellite System (NPOESS)
Preparatory Project (NPP,) and the follow-on Joint Polar Satellite System (JPSS.)
A summary of the development of the Absolute Radiance Interferometer (ARI) at the University of Wisconsin Space
Science and Engineering Center (UW-SSEC) will be presented. At the heart of the sensor is the ABB CLARREO
Interferometer Test-Bed (CITB), based directly on the ABB Generic Flight Interferometer (GFI). This effort is funded
under the NASA Instrument Incubator Program (IIP).
The Submillimeter-wave and Infrared Ice Cloud Experiment (SIRICE) concept would provide global measurements of ice water path (IWP - the vertically integrated mass of ice particles per unit area), and weighted mean mass particle diameter (Dme). The SIRICE payload consists of two instruments, the Sub-millimeter/Millimeter (SM4) Radiometer, and the Infrared Cloud Ice Radiometer (IRCIR). IRCIR is a compact, low-cost, multi-spectral, wide field of view pushbroom infrared imaging radiometer. IRCIR will employ four IR sensor assemblies to produce 90° cross-track (contiguous along-track) coverage in three spectral bands with a spatial resolution of 0.6 km at nadir. Each IR sensor assembly consists of an uncooled microbolometer focal plane array (FPA), associated sensor core electronics, a stripe filter fixed at the FPA, and an IR lens assembly. A single scene mirror is used to provide two Earth view angles, as well as calibration views of space and the on-board calibration blackbody. The two Earth view angles will be used for stereo cloud height retrievals.
The ability to accurately validate high spectral resolution infrared radiance measurements from space using comparisons
with a high altitude aircraft spectrometer has been successfully demonstrated (Tobin, et al. 2006). A comparison
technique which accounts for the different viewing geometries and spectral characteristics of the two sensors was
introduced, and accurate comparisons were made for AIRS channels throughout the infrared spectrum. Resulting
brightness temperature differences were found to be 0.2 K or less for most channels. Continuing work on additional
cases has shown some channels to have brightness temperature differences larger than 0.2 K. Atmospheric contribution
from above the aircraft is a suspected factor in producing the larger differences. The contribution of upper atmosphere
HNO3 and O3 are studied as contributors to the brightness temperature differences. Improved forward model
calculations are used to understand and compensate for the above aircraft atmospheric contribution. Results of this
effort to understand the observed temperature differences are presented. The methodology demonstrated for the NASA
AIRS instrument is expected to be used in the validation of the CrIS sensor radiances from the operational
NPP/NPOESS platforms and the IASI sensor radiances from the METOP platforms.
The new era of high spectral resolution infrared instruments for atmospheric sounding offers great opportunities for
climate change applications. A major issue with most of our existing IR observations from space is spectral sampling
uncertainty and the lack of standardization in spectral sampling. The new ultra resolution observing capabilities from the
AIRS grating spectrometer on the NASA Aqua platform and from new operational FTS instruments (IASI on Metop,
CrIS for NPP/NPOESS, and the GIFTS for a GOES demonstration) will go a long way toward improving this situation.
These new observations offer the following improvements:
1. Absolute accuracy, moving from issues of order 1 K to <0.2-0.4 K brightness temperature,
2. More complete spectral coverage, with Nyquist sampling for scale standardization, and
3. Capabilities for unifying IR calibration among different instruments and platforms.
However, more needs to be done to meet the immediate needs for climate and to effectively leverage these new
operational weather systems, including
1. Place special emphasis on making new instruments as accurate as they can be to realize the potential of
technological investments already made,
2. Maintain a careful validation program for establishing the best possible direct radiance check of long-term
accuracy--specifically, continuing to use aircraft-or balloon-borne instruments that are periodically checked
directly with NIST, and
3. Commit to a simple, new IR mission
that will provide an ongoing backbone for the climate observing system. The new mission would make use of Fourier Transform Spectrometer measurements to fill in spectral and
diurnal sampling gaps of the operational systems and provide a benchmark with better than 0.1K 3-sigma accuracy based on standards that are verifiable in-flight.
KEYWORDS: Interferometers, Mirrors, Calibration, Black bodies, Sensors, Satellites, Digital signal processing, Data storage, Fluctuations and noise, Acoustics
A comparison of S-HIS instrument performance on various airborne platforms, and during ground characterization is presented. Specific emphasis is placed on instrument improvements, 1998 to present day, and the engineering lessons learned. Also discussed is the ability to accurately validate high spectral resolution IR radiance measurements from space using comparisons with aircraft spectrometer observations. Aircraft comparisons of this type provide a mechanism for periodically verifying expected absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for achieving the long-term consistency and accuracy of climate observations, including those from the NASA EOS spacecrafts (Terra, Aqua, Aura).
Development in the mid 80s of the High-resolution Interferometer Sounder (HIS) instrument for the high altitude NASA ER2 aircraft demonstrated the capability for advanced atmospheric temperature and water vapor sounding and set the stage for new satellite instruments that are now becoming a reality [AIRS(2002), CrIS(2006), IASI(2006), GIFTS(200?), HES(2013)]. Follow-on developments at the University of Wisconsin that employ Fourier Transform Infrared (FTIR) for Earth observations include the ground-based Atmospheric Emitted Radiance Interferometer (AERI) and the new Scanning HIS aircraft instrument.
The Scanning HIS is a smaller version of the original HIS that uses cross-track scanning to enhance spatial coverage. Scanning HIS and its close cousin, the NPOESS Airborne Sounder Testbed (NAST), are being used for satellite instrument validation and for atmospheric research. A novel detector configuration on Scanning HIS allows the incorporation of a single focal plane and cooler with three or four spectral bands that view the same spot on the ground. The calibration accuracy of the S-HIS and results from recent field campaigns are presented, including validation comparisons with the NASA EOS infrared observations (AIRS and MODIS).
Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations, including those from the NASA EOS spacecrafts (Terra, Aqua and Aura) and the new complement of NPOESS operational instruments. It is expected that aircraft flights of the S-HIS and the NAST will be used to check the long-term stability of AIRS and the NPOESS operational follow-on sounder, the Cross-track Infrared Sounder (CrIS), over the life of the mission.
The ability to accurately validate high spectral resolution infrared radiance measurements from space using comparisons with aircraft spectrometer observations has been successfully demonstrated. The demonstration is based on an under-flight of the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua spacecraft by the Scanning High resolution Interferometer Sounder (S-HIS) on the NASA ER-2 high altitude aircraft on 21 November 2002 and resulted in brightness temperature differences approaching 0.1K for most of the spectrum. This paper presents the details of this AIRS/S-HIS validation case and also presents comparisons of Aqua AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) radiance observations. Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations. It is expected that aircraft flights of the S-HIS and its close cousin the National Polar Orbiting Environmental Satellite System (NPOESS) Atmospheric Sounder Testbed (NAST) will be used to check the long-term stability of the NASA EOS spacecrafts (Terra, Aqua and Aura) and the follow-on complement of operational instruments, including the Cross-track Infrared Sounder (CrIS).
Development in the mid 80s of the High-resolution Interferometer Sounder (HIS) for the high altitude NASA ER2 aircraft demonstrated the capability for advanced atmospheric temperature and water vapor sounding and set the stage for new satellite instruments that are now becoming a reality [AIRS (2002), CrIS (2006), IASI (2006), GIFTS (2005/6)]. Follow-on developments at the University of Wisconsin-Madison that employ interferometry for a wide range of Earth observations include the ground-based Atmospheric Emitted Radiance Interferometer (AERI) and the Scanning HIS aircraft instrument (S-HIS). The AERI was developed for the US DOE Atmospheric Radiation Measurement (ARM) Program, primarily to provide highly accurate radiance spectra for improving radiative transfer models. The continuously operating AERI soon demonstrated valuable new capabilities for sensing the rapidly changing state of the boundary layer and properties of the surface and clouds. The S-HIS is a smaller version of the original HIS that uses cross-track scanning to enhance spatial coverage. S-HIS and its close cousin, the NPOESS Airborne Sounder Testbed (NAST) operated by NASA Langley, are being used for satellite instrument validation and for atmospheric research. The calibration and noise performance of these and future satellite instruments is key to optimizing their remote sensing products. Recently developed techniques for improving effective radiometric performance by removing noise in post-processing is a primary subject of this paper.
The Scanning High-resolution Interferometer Sounder (S-HIS) instrument is a cross track scanning Fourier-transform interferometer with 0.5 wavenumber resolution. It uses three detectors to cover the upwelling earth spectrum over the range from 3.3 to 17 microns. Vibration experienced during flight on aircraft platforms can cause a significant level of spectrally correlated noise in the calibrated spectra. To allow this interferometric noise to be removed by analysis, a wavefront tilt measurement system that monitors vibration induced optical tilts has been incorporated into the S-HIS instrument. This two-axis tilt measurement system records small changes in wavefront alignment during the data collection of both scene and blackbody interferograms. In general, both amplitude-modulation and sample-position errors can result from these tilts. Here we show that the modulation errors that dominate the interferometric noise in the S-HIS shortwave band can be significantly reduced by using the wavefront tilt measurements to model and remove the interferometric errors. The validation of our vibration induced tilt error model with blackbody data demonstrates a correction technique applicable to correcting all types of scene data.
The calibration accuracy of the Moderate resolution Imaging Spectro-radiometer (MODIS) on Terra near its one year anniversary of first light has been assessed using ER-2 aircraft underflights during the Terra eXperiment (TX-2001) in the spring, 2001. The ER-2, equipped with the MAS and SHIS instruments, underflew Terra several times viewing clear sky earth scenes of the Gulf of Mexico. MAS and SHIS form a powerful tandem, combining high spatial resolution imaging with high spectral resolution sampling in the midwave to longwave infrared region. The assessment is based on co-located MODIS and MAS fields of view with matching viewing geometry and removes spatial and spectral dependencies. The MAS L1B calibration accuracy is improved by transferring the SHIS calibration accuracy (conservatively 0.5 K) to MAS. The early results of two days from TX-2001 indicate that MODIS bands are performing well, but not optimally. The MODIS MWIR window bands appear to be close to the 0.75 - 1% radiometric accuracy specification for the uniform warm, low reflectance scenes assessed, perhaps suggesting that known electronic crosstalk in MODIS SWIR and MWIR bands is small for such scenes. MODIS LWIR window bands show residuals of about 0.5 K to 0.6 K, larger than the 0.5% radiometric accuracy specification. However with the 0.5 K (window bands) to 1 K (atmospheric bands) uncertainties associated with the current assessment, it is not possible to definitively state whether these MODIS bands are or are not within specification. MODIS LWIR atmospheric CO2 bands appear to perform near the 1% accuracy specification with the exception of bands 35 and 36, the upper tropospheric CO2 bands at 13.9micrometers and 14.1micrometers . Different MODIS viewing geometry on the two days seems to suggest that scan mirror reflectance dependence on mirror angles may be influencing the MODIS L1B calibration for some bands, most notably the 8.6micrometers and LWIR CO2 bands; however this assessment is dependent upon the accuracy of the spectral correction (a function of atmospheric conditions), which will be further investigated in coming months. It was surprising to find large MODIS residuals for several bands when the mirror angle to the earth scene closely matched that of when MODIS views its onboard blackbody.
The combination of massively parallel spatial sampling and accurate spectral radiometry offered by imaging FTS makes it extremely attractive for earth and planetary remote sensing. We constructed a breadboard instrument to help assess the potential for planetary applications of small imaging FTS instruments in the 1-5 micrometers range. The results also support definition of the NASA Geostationary Imaging FTS instrument that will make key meteorological and climate observations from geostationary earth orbit. The PIFTS pivoting voice- coil delay scan mechanism, and laser diode metrology system. The interferometer optical output is measured by a commercial IR camera procured from Santa Barbara Focal plane. It uses an InSb 128 by 128 detector array that covers the entire FOV of the instrument when coupled with a 25-mm focal length commercial camera lens. With appropriate lenses and cold filters the instrument can be used from the visible to 5 micrometers . The delay scan is continuos, but slow, covering the maximum range of +/- 0.4 cm in 37.56 sec at a rate of 500 image frames per second. Image exposures are timed to be centered around predicted zero crossings. The design allows for prediction algorithms that account for the most recent fringe rate so that timing jitter produced by scan speed variations can be minimized. Response to a fixed source is linear with exposure time nearly to the point of saturation. Linearity with respect to input variations was demonstrated to within 0.16 percent using a 3-point blackbody calibration. Imaging of external complex scenes was carried out at low and high spectral resolution. These require full complex calibration to remove background contributions that vary dramatically over the instrument FOV. Testing is continuing to demonstrate the precise radiometric accuracy and noise characteristics.
The NASA New Millennium Program's Geostationary Imaging Fourier Transform Spectrometer (GIFTS) requires highly accurate radiometric and spectral calibration in order to carry out its mission to provide water vapor, wind, temperature, and trace gas profiling from geostationary orbit. A calibration concept has bene developed for the GIFTS Phase A instrument design. The in-flight calibration is performed using views of two on-board blackbody sources along with cold space. A radiometric calibration uncertainty analysis has been developed and used to show that the expected performance for GIFTS exceeds its top level requirement to measure brightness temperature to better than 1 K. For the Phase A GIFTS design, the spectral calibration is established by the highly stable diode laser used as the reference for interferogram sampling, and verified with comparisons to atmospheric calculations.
Several MODIS cloud product algorithms are being developed at the University of Wisconsin for the generation of day-1 products after the launch of MODIS. MODIS Airborne Simulator (MAS) radiometric data collected form NASA's ER-2 platform is being used to simulate MODIS spectral bands for testing and refinement of the cloud product algorithms. Spectral characterization is an important component of the MAS calibration. MAS LWIR bands are spectrally characterized in ambient conditions using a monochromator and are corrected for source spectral shape and atmospheric attenuation. An atmospheric correction based on LBLRTM forward model transmittances demonstrates that strong spectral absorption features, such as Q-branch CO2 absorption near 13.9 micrometers , are effectively removed from the spectral measurements with the aid of a small spectral position correction. Comparisons of MAS in-flight data to well- calibrated HIS instrument data indicate that MAS LWIR spectral calibration drift over time is less than 5 percent of FWHM. The MODIS CO2 cloud top height retrieval shows small dependence on the spectral characterization, with retrieved cloud top height changing by less than 0.5 km in response to a 5 percent spectral position change. This is within the tolerance of other error sources in the cloud top properties algorithm.
Broadband IR high spectral resolution observations of atmospheric emission provide key meteorological information related to atmospheric state parameters, cloud and surface spectral properties, and processes influencing radiative budgets and regional climate. Fourier transform spectroscopy (FTS), or Michelson interferometry, has proven to be an exceptionally effective approach for making these IR spectral observations with the high radiometric accuracy necessary for weather and climate applications, and are currently developing a new airborne instrument for use on an unmanned aerospace vehicle (UAV). These include the high- resolution interferometer sounder aircraft instrument developed for the NASA high altitude ER2, the atmospheric emitted radiance interferometer (AERI) and the new AERI-UAV for application in the DOE atmospheric radiation measurement program. This paper focuses on the design of the AERI-UAV which is novel in many respects. The efforts will help speed the day when this valuable instrumentation is used to improve remote sensing and radiative budget observations from space.
KEYWORDS: Black bodies, Calibration, Long wavelength infrared, Temperature metrology, MODIS, Short wave infrared radiation, Carbon dioxide, Absorption, Clouds, Spectral resolution
The impact of non-unit calibration blackbody emissivity on MODIS airborne simulator (MAS) absolute thermal calibration accuracy is investigated. Estimates of blackbody effective emissivity were produced for MAS infrared channels using laboratory observations of a thermally controlled external source in a stable ambient environment. Results are consistent for spectrally close atmospheric window channels. SWIR channels show an effective emissivity of about 0.98; LWIR channels show an effective emissivity of about 0.94. Using non-unit blackbody effective emissivity reduces MAS warm scene brightness temperatures by about 1 degree Celsius and increases cold scene brightness temperatures by more than 5 degrees Celsius as compared to those inferred from assuming a unit emissivity blackbody. To test the MAS non- unit effective emissivity calibration, MAS and high- resolution interferometer sounder (HIS) LWIR data from a January 1995 ER-2 flight over the Gulf of Mexico were compared. Results show that including MAS blackbody effective emissivity decreases LWIR absolute calibration biases between the instruments to less than 0.5 degrees Celsius for all scene temperatures, and removes scene temperature dependence from the bias.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.