Recently, efficient image descriptors have shown promise for image classification tasks. Moreover, methods based on the combination of multiple image features provide better performance compared to methods based on a single feature. This work presents a simple and efficient approach for combining multiple image descriptors. We first employ a Naive-Bayes Nearest-Neighbor scheme to evaluate four widely used descriptors. For all features, “Image-to-Class” distances are directly computed without descriptor quantization. Since distances measured by different metrics can be of different nature and they may not be on the same numerical scale, a normalization step is essential to transform these distances into a common domain prior to combining them. Our experiments conducted on a challenging database indicate that z-score normalization followed by a simple sum of distances fusion technique can significantly improve the performance compared to applications in which individual features are used. It was also observed that our experimental results on the Caltech 101 dataset outperform other previous results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.