This paper will review the top down technique of ICP etching for the formation of nanometer scale structures. The increased difficulties of nanoscale etching will be described. However it will be shown and discussed that inductively coupled plasma (ICP) technology is well able to cope with the higher end of the nanoscale: features from 100nm down to about 40nm are relatively easy with current ICP technology. It is the ability of ICP to operate at low pressure yet with high plasma density and low (controllable) DC bias that helps greatly compared to simple reactive ion etching (RIE) and, though continual feature size reduction is increasingly challenging, improvements to ICP technology as well as improvements in masking are enabling sub-10nm features to be reached. Nanoscale ICP etching results will be illustrated in a range of materials and technologies. Techniques to facilitate etching (such as the use of cryogenic temperatures) and techniques to improve the mask performance will be described and illustrated.
The etching characteristics of ZnO epitaxial layers in Oxford Plasmalab 100 ICP 180 and 380 systems are
investigated. Etch rates are studied as a function of gas composition, ICP power and RF bias power. Surface
profilometry and scanning electron microscopy are used to characterize etch rates and surface morphologies. Highlights
from other recently published results are also discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.