A Doppler asymmetric spatial heterodyne (DASH) interferometer was designed to measure atmospheric winds at a height of 60 to 80 km by observing the airglow emission line of molecular oxygen at 867 nm. The designed monolithic DASH interferometer exhibited decent thermal stability. The phase thermal drift of the fabricated interferometer obtained from thermal performance measurements was 0.376 rad / ° C. To accurately model and minimize the thermal drift performance of an interferometer in the design phase, it is necessary to include the influence of thermal distortion of the monolithic interferometer components. Therefore, an optical–structural–thermal integrated analysis method based on Zernike polynomials was proposed to accurately calculate the phase thermal drift of the interferometer. The optical model modified by the finite-element method calculated the phase thermal drift to be 0.420 rad / ° C, which agreed with the experimental result within 11.7%. This analysis method can accurately calculate and optimize thermal stability during the design of a DASH interferometer.
With the increasing demand of infrared detection, the infrared cold optical technology has developed rapidly in recent decades. The low temperature deformation of infrared optical elements is one of the key factors restricting the development of infrared cold optical technology. The processing and assembly of optical subassemblies and support structures are carried out at room temperature and pressure, while the actual working environment of infrared system is relatively low temperature environment, which can vary by 200 degrees Kelvin or more. Therefore, the temperature adaptability of the support structure is strictly required. The optimal design flexible support of the 70mm diameter single crystal lens made by germanium was carried out to ensure that the component surface shape reached (1/6) λ and the natural frequency was above 200HZ at 100K low temperature in this paper. At the same time, the ISIGHT integrated optimization method was used to optimize the flexible support structure. The multi-objective integrated optimization of key dimensions of flexible support was completed, aiming at maximizing the fundamental frequency of the system and minimizing the lens surface shape errors. Finally, the optimal size was selected to complete the flexible structure design. In this paper, an adaptive flexible support structure for cold optical lens with three layers of stress release was designed by multi-objective integrated optimization method. Meanwhile, its performance was verified by low temperature tests. The results verified the reliability and the feasibility of the structure design and analysis.
Spatial heterodyne spectroscopy for long-wave infrared identifies an ozone line near 1133 cm-1 (about 8.8 μm) as a suitable target line, the Doppler shifts of which are used to retrieve stratosphere wind and ozone concentration. The basic principle of Spatial Heterodyne Spectroscopy (SHS) is elaborated. Theoretical analyses for the optical parameters of spatial heterodyne spectroscopy are deduced. The optical system is designed to work at 160 K and to maximize the field of view (FOV). The optical design and simulation is carried on to fulfill the requirement. The principle prototype was built and a frequency-stable laser was used to conduct the experiment. Result shows that the designed interferometer can meet the requirement of spectral resolution (0.1 cm-1 ) and that the spatial frequency of fringe pattern is consistent with the theoretical value at normal temperature and pressure.
As a new type of wind field detection technology, Doppler Asymmetric Spatial Heterodyne(DASH)can invert information such as atmospheric wind speed by monitoring the Doppler frequency shift of the absorption line or emission line of the atmospheric composition. It is widely used in the detection of middle and upper atmospheric wind fields. In this paper, a flexible support structure suitable for DASH interferometer is designed, so that the bonding process between different materials has a high safety margin in environmental testing. After modal analysis and random vibration analysis of the whole structure, the results show that the design meets the requirements. First, the fundamental frequency of the interferometer (765.79Hz>100Hz) meets the requirements of general satellites for the load; secondly, the random vibration analysis results show that the bonding stress between the surfaces is less than the allowable stress of the material (2MPa<14MPa), and it has a certain safety margin (>2); finally, the optical parts and structural parts did not collide with the structural parts during the vibration process, and the flexible structure did not undergo plastic deformation, and the whole structure of the interferometer was safe and reliable
The main propose of this paper is to discuss the possibility of a space-based early warning technology for missiles in boost phase based on the near-infrared fine spectrum of potassium atoms in the exhaust plume. Emission transfer link from the exhaust plume to the detector is established in combination with the observation model of satellite and target on the ground. Line-by-line integral method is used to calculate the characteristic spectrum of potassium atoms. The result shows the potassium line have high spectral emissivity and narrow bandwidth. The analyses on the atmospheric transmission and background radiation indicate that the atmospheric transmission of the 769.896 nm potassium line is higher than that of the 766.490 nm potassium line which lies on top of an O2 line, and the irradiance of the 769.896 nm line is stronger than that of background and the 766.490 nm line. Considering atmospheric transmission and background radiation, it is suitable to choose the 769.896 nm line to detect the exhaust plume of the missile. According to the characteristic of potassium atoms emission line with narrow bandwidth, a 1.2 nm wide filter centered on 770nm is used to extract target signal. The maximum detection range and other indexes are evaluated. The simulation results show that ultra-narrow band filter can achieve a large degree of background suppression, and the system performance indexes meet the detection requirements. Therefore, it is feasible that missile detection can be realized by using near-infrared fine spectrum of potassium atoms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.