The Faint Intergalactic Medium Redshifted Emission Balloon (FIREBall-2) is a UV multi-object spectrograph designed to detect emission from the circumgalactic and circumquasar medium at low redshifts (0.3 < z < 1.0). The FIREBall-2 spectrograph uses a suborbital balloon vehicle to access a stratospheric transmission window centered around 205 nm and is fed by a 1-m primary parabolic mirror and a 2-mirror field corrector that allows an ≈11’ x 35’ field of view. The slit-mask spectrograph can access dozens of galaxy targets per field, with each target spectrum read out on a UV electron-multiplying CCD detector. Following a flight in 2018, several refurbishments and modifications were made to the instrument and telescope to prepare for additional flight opportunities. Here we present an overview of upgrades and improvements made since the previous flight and discuss the 2023 field campaign, which culminated in a flight from Fort Sumner, New Mexico in September, 2023.
FIREBall-2 is a Balloon-Borne UV telescope designed to observe faint UV emission from the circumgalactic medium around low redshift galaxies (z 0.3 - 1.0). FIREBall-2 employs a 1m telescope with a multi-object spectrograph, custom-designed slit-masks and a delta-doped EMCCD detector. FIREBall-2 achieves steady 1-2” pointing with a CNES-provided coarse guidance system complemented by a fine guidance system which provides real time, on-sky feedback with an sCMOS camera embedded within the spectrograph enclosure. The guider system provides a live video stream, computes translational and rotational offsets and sends high rate (30 Hz) gondola pointing error corrections, while also handling slit mask selection and in-flight optimization of the image focus and PSF. We review the current state of the system after testing and use during FIREBall-2’s 2018 and 2023 campaigns and discuss its performance, challenges and development of its hardware and software functions ahead of its next flight campaign.
We present the integration of a new calibration system into the Faint Intergalactic-medium Redshifted Emission Balloon-2 (FIREBall-2), which added in-flight calibration capability for the recent September 2023 flight. This system is composed of a calibration source box containing zinc and deuterium lamp sources, focusing optics, electronics, sensors, and a fiber-fed calibration cap with an optical shutter mounted on the spectrograph tank. We discuss how the calibration cap is optimized to be evenly illuminated through non-sequential modeling for the near-UV (191 to 221 nm) for spectrograph slit mask position calibration, electron multiplying charged-coupled device (EMCCD) gain amplification verification, and wavelength calibration. Then, we present the pre-flight performance testing results of the calibration system and their implications for in-flight measurements. FIREBall-2 flew in 2023, but did not collect calibration data due to early termination of the flight.
The integration of a new calibration system into FIREBall-2 (Faint Intergalactic Redshifted Emission Balloon-2) allows in-flight calibration capability for the upcoming Fall 2023 flight. This system is made up of a calibration box that contains zinc and deuterium lamp sources, focusing optics, electronics, and sensors, and a fiber-fed calibration cap with an optical shutter mounted on the spectrograph tank. We discuss how the calibration cap is optimized to be evenly illuminated through nonsequential modeling for the near-UV (200-208nm). Then, we present the pre-flight performance testing results of the calibration system and their implications for in-flight measurements.
We present a comprehensive stray light analysis and mitigation strategy for the FIREBall-2 ultraviolet balloon telescope. Using nonsequential optical modeling, we identified the most problematic stray light paths, which impacted telescope performance during the 2018 flight campaign. After confirming the correspondence between the simulation results and postflight calibration measurements of stray light contributions, a system of baffles was designed to minimize stray light contamination. The baffles were fabricated and coated to maximize stray light collection ability. Once completed, the baffles will be integrated into FIREBall-2 and tested for performance preceding the upcoming flight campaign. Given our analysis results, we anticipate a substantial reduction in the effects of stray light.
DICOS is a technological demonstrator under a stratospheric balloon for advanced pointing and wavefront stability technologies. The aim is to reach 10 mas fine pointing and 20 nm rms wavefront error (WFE), with 1 nm rms stability. The sizing case comes from the coronography technique for exoplanets direct detection. The instrument is based on a 40 cm telescope made in aluminum and mounted in a CARMEN gondola. The deformations and pointing errors are compensated by active loops driving a deformable mirror (DM) with 97 actuators. The current funded phase of the project will end in 2024 by a full-scale ground demonstration.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.