Rapid, label-free, volumetric, and automated assessment in microscopy is necessary to assess the dynamic interactions between lymphocytes and their targets through the immunological synapse (IS) and the relevant immunological functions. However, attempts to realize the automatic tracking of IS dynamics have been stymied by the limitations of imaging techniques and computational analysis methods. Here, we demonstrate the automatic three-dimensional IS tracking by combining optical diffraction tomography and deep-learning-based segmentation. The proposed approach enables quantitative spatiotemporal analyses of IS regarding morphological and biochemical parameters related to its protein densities, offering a novel complementary method to fluorescence microscopy for studies in immunology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.