Several autofocus algorithms based on the analysis of image sharpness have been proposed for microscopy applications. Since autofocus functions (AFs) are computed from several images captured at different lens positions, these algorithms are considered computationally intensive. With the aim of presenting the capabilities of dedicated hardware to speed-up the autofocus process, we discuss the implementation of four AFs using, respectively, a multicore central processing unit (CPU) architecture and a graphic processing unit (GPU) card. Throughout different experiments performed on 300 image stacks previously identified with tuberculosis bacilli, the proposed implementations have allowed for the acceleration of the computation time for some AFs up to 23 times with respect to the serial version. These results show that the optimal use of multicore CPU and GPUs can be used effectively for autofocus in real-time microscopy applications.
We propose an invariant description method based on Zernike moments to classify hand vein patterns from raw infrared (IR) images. Orthogonal moments provide linearly independent descriptors and are invariant to affine transformations, such as translation, rotation, and scaling. A mathematical expression is given to derive a set of moment invariants. The obtained features have all the properties of moment invariants with the additional feature of image contrast invariance. For dorsal hand vein pattern acquisition, an IR imaging system is implemented. Also, a public database is used for a palm vein recognition task. A correct rate classification (CRC) above 99.9% is achieved using a set of rotation, scale, and intensity Zernike moment invariants. Additionally, multilayer perceptron and K-nearest neighbors are used as classifiers having as input data the Zernike normalized moments. A discriminative feature evaluation of the image moments allows the reduction of the number of descriptors while maintaining a high classification rate of 99%. The efficiency of the moment descriptors is evaluated in terms of accuracy and reduced computational cost by (a) avoiding the necessity of a preprocessing stage and (b) reducing the feature vector dimension. Experimental results show that Zernike moment invariants are able to achieve hand vein recognition without image preprocessing or image normalization with respect to change of size, rotation, and intensity.
View contact details