Cesium lead bromide nanocrystals, in contrast to most other materials, exhibit near-unity photoluminescence quantum yields (PLQY). When excited below the band gap, they absorb the photons and show anti-Stokes photoluminescence (ASPL), emitting higher energy, band-gap photons. Simultaneous existence of near-unity PLQY and ASPL can be used to optically cool these materials. In this talk, I will report near-unity ASPL efficiencies in CsPbBr3 nanocrystals and attribute it to resonant multiple-phonon absorption by polarons. The theory explains paradoxically large efficiencies for intrinsically disfavored, multiple-phonon-assisted ASPL in nanocrystals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.