State-of-the-art nanolithography machines employ extreme ultraviolet (EUV) light to pattern nanometer-scale features on silicon wafers for the production of integrated circuits. This radiation is generated in a laserproduced plasma formed on tin microdroplet targets. In this contribution, we give an overview of our recent experimental and theoretical studies on the properties of tin plasmas driven by short-wavelength lasers and the subsequent tin fluid dynamics. First, we will present a comprehensive characterization of the properties of laserproduced tin plasmas driven by lasers with wavelengths in the 1–10 µm range. Second, we present absolutely calibrated, charge-state-resolved measurements of the ion kinetic energy distribution recorded under multiple detection angles. Through extensive radiation-hydrodynamic simulations of the plasma formation, growth and expansion, we demonstrate that a single-fluid approach accurately reproduces the angular dependence of the ion energy distribution. Moreover, we identify the origin of a high-energy peak in the distribution as a high-speed shell generated at early times in the expansion. Finally, we show that the time evolution of the droplet target morphology is entirely determined by the early-time plasma-driven pressure impulse on the droplet.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.