Optical diffraction tomography (ODT) has demonstrated its potential for revealing subcellular structures and quantitative compositions in living cells without chemical staining. Recently, we developed a deep-learning based algorithm to reconstruct the 3D refractive index (RI) maps of cells using a single raw interferogram, measured from an angle-multiplexed ODT system. Using this system, we demonstrated a high throughput 3D image cytometry method, in which a microfluidic chip for controlling cell flow is integrated in the ODT system. By flowing the cells in the chip and minimizing the camera exposure time, we can achieve 3D imaging of over 6,000 cells per second.
Quantitative imaging of anisotropic dynamics, such as liquid crystal flows, becomes more and more important nowadays . Therefore, there is great demand to develop high-speed quantitative polarization imaging techniques. We propose a novel single-shot, highly accurate and sensitive quantitative polarization imaging technique, called polarized shearing interference microscopy (PSIM), to explore the dynamical properties of disodium cromoglycate (DSCG) under flow at different flow rates. We determine the retardance and orientation angle of DSCG under flow, and show that their spatial and temporal auto-correlation will reduce when the flow rate increases, which is in agreement with the theoretical results based on dimensional analysis of nematic dynamics .
Optical diffraction tomography (ODT) is a powerful label-free three-dimensional (3D) quantitative imaging technique. However, current ODT modalities require around 50 different illumination angles to reconstruct the 3D refraction index (RI) map, which limits its imaging speed and prohibit it from further applications. Here we propose a deep-learning approach to reduce the number of illumination angles and improve the imaging speed of ODT. With 3D Unet architecture and large training data of different species of cells, we can decrease the number of illumination angles from 49 to 5 with similar reconstruction performance, which empowers ODT the capability to reveal high-speed biological dynamics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.