SignificanceLensless digital inline holographic microscopy (LDIHM) is an emerging quantitative phase imaging modality that uses advanced computational methods for phase retrieval from the interference pattern. The existing end-to-end deep networks require a large training dataset with sufficient diversity to achieve high-fidelity hologram reconstruction. To mitigate this data requirement problem, physics-aware deep networks integrate the physics of holography in the loss function to reconstruct complex objects without needing prior training. However, the data fidelity term measures the data consistency with a single low-resolution hologram without any external regularization, which results in a low performance on complex biological data.AimWe aim to mitigate the challenges with trained and physics-aware untrained deep networks separately and combine the benefits of both methods for high-resolution phase recovery from a single low-resolution hologram in LDIHM.ApproachWe propose a hybrid deep framework (HDPhysNet) using a plug-and-play method that blends the benefits of trained and untrained deep models for phase recovery in LDIHM. The high-resolution phase is generated by a pre-trained high-definition generative adversarial network (HDGAN) from a single low-resolution hologram. The generated phase is then plugged into the loss function of a physics-aware untrained deep network to regulate the complex object reconstruction process.ResultsSimulation results show that the SSIM of the proposed method is increased by 0.07 over the trained and 0.04 over the untrained deep networks. The average phase-SNR is elevated by 8.2 dB over trained deep models and 9.8 dB over untrained deep networks on the experimental biological cells (cervical cells and red blood cells).ConclusionsWe showed improved performance of the HDPhysNet against the unknown perturbation in the imaging parameters such as the propagation distance, the wavelength of the illuminating source, and the imaging sample compared with the trained network (HDGAN). LDIHM, combined with HDPhysNet, is a portable and technology-driven microscopy best suited for point-of-care cytology applications.
SignificanceArtificial intelligence (AI) has become a prominent technology in computational imaging over the past decade. The expeditious and label-free characteristics of quantitative phase imaging (QPI) render it a promising contender for AI investigation. Though interferometric methodologies exhibit potential efficacy, their implementation involves complex experimental platforms and computationally intensive reconstruction procedures. Hence, non-interferometric methods, such as transport of intensity equation (TIE), are preferred over interferometric methods.AimTIE method, despite its effectiveness, is tedious as it requires the acquisition of many images at varying defocus planes. The proposed methodology holds the ability to generate a phase image utilizing a single intensity image using generative adversarial networks (GANs). We present a method called TIE-GANs to overcome the multi-shot scheme of conventional TIE.ApproachThe present investigation employs the TIE as a QPI methodology, which necessitates reduced experimental and computational efforts. TIE is being used for the dataset preparation as well. The proposed method captures images from different defocus planes for training. Our approach uses an image-to-image translation technique to produce phase maps and is based on GANs. The main contribution of this work is the introduction of GANs with TIE (TIE:GANs) that can give better phase reconstruction results with shorter computation times. This is the first time the GANs is proposed for TIE phase retrieval.ResultsThe characterization of the system was carried out with microbeads of 4 μm size and structural similarity index (SSIM) for microbeads was found to be 0.98. We demonstrated the application of the proposed method with oral cells, which yielded a maximum SSIM value of 0.95. The key characteristics include mean squared error and peak-signal-to-noise ratio values of 140 and 26.42 dB for oral cells and 100 and 28.10 dB for microbeads.ConclusionsThe proposed methodology holds the ability to generate a phase image utilizing a single intensity image. Our method is feasible for digital cytology because of its reported high value of SSIM. Our approach can handle defocused images in such a way that it can take intensity image from any defocus plane within the provided range and able to generate phase map.
Lensless digital holography is a low-cost imaging technique with promising applications in a resource deficit environment. It can be used for the diagnosis and analysis of RBCs. Modifications in their morphology and other physical parameters are indicative of several diseases. The sparsity constraint imposed by the twin image phenomenon in inline holography allows the implementation of compressive sensing based holographic reconstruction. It allows the estimation of parameters like size, thickness, volume, sphericity index etc. form the extracted phase information. In this work this approach is used to study RBC in healthy and anemic states.
Lensless microscopes are simple, portable, and cost effective compared with the sophisticated microscopes of today that require high-end objectives, lenses, and filters. We demonstrate a lensless on-chip phase microscope based on the holographic principle to image 3D nanometric depth information from transparent and weakly scattering biological samples. We characterize the microscope using standard quantitative phase resolution target (PRT) charts with feature depths from 50 to 350 nm and report a signal-to-noise ratio value of 23 dB. Further, we apply a gradient descent-based constrained optimization approach for phase retrieval to eliminate the twin image and noise from the hologram. The device, operating as an inline holographic microscope, can perform quantitative phase imaging with nanometric depth sensitivity for a field of view of 29.4 mm2 using an LED-based light source butt-coupled to an optical fiber cable.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.