The NEID spectrograph on the WIYN 3.5-m telescope at Kitt Peak has completed its first full year of science operations and is reliably delivering sub-m/s precision radial velocity measurements. The NEID instrument control system uses the TIMS package (Bender et al. 2016), which is a client-server software system built around the twisted python software stack. During science observations, interaction with the NEID spectrograph is handled through a pair of graphical user interfaces (GUIs), written in PyQT, which wrap the underlying instrument control software and provide straightforward and reliable access to the instrument. Here, we detail the design of these interfaces and present an overview of their use for NEID operations. Observers can use the NEID GUIs to set the exposure time, signal-to-noise ratio (SNR) threshold, and other relevant parameters for observations, configure the calibration bench and observing mode, track or edit observation metadata, and monitor the current state of the instrument. These GUIs facilitate automatic spectrograph configuration and target ingestion from the nightly observing queue, which improves operational efficiency and consistency across epochs. By interfacing with the NEID exposure meter, the GUIs also allow observers to monitor the progress of individual exposures and trigger the shutter on user-defined SNR thresholds. In addition, inset plots of the instantaneous and cumulative exposure meter counts as each observation progresses allow for rapid diagnosis of changing observing conditions as well as guiding failure and other emergent issues.
Here we detail the on-sky performance of the NEID Port Adapter one year into full science operation at the WIYN 3.5m Telescope at Kitt Peak National Observatory. NEID is an optical (380-930 nm), fiber-fed, precision Doppler radial velocity system developed as part of the NASA-NSF Exoplanet Observational Research (NN-EXPLORE) partnership. The NEID Port Adapter mounts directly to a bent-Cassegrain port on the WIYN Telescope and is responsible for precisely and stably placing target light on the science fibers. Precision acquisition and guiding is a critical component of such extreme precision spectrographs. In this work, we describe key on-sky performance results compared to initial design requirements and error budgets. While the current Port Adapter performance is more than sufficient for the NEID system to achieve and indeed exceed its formal instrumental radial velocity precision requirements, we continue to characterize and further optimize its performance and efficiency. This enables us to obtain better NEID datasets and in some cases, improve the performance of key terms in the error budget needed for future extreme precision spectrographs with the goal of observing ExoEarths, requiring ∼ 10 cm/s radial velocity measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.